
1. (10 pts) Let (M, d) be a metric space. Show that ρ(x, y) =
√
d(x, y)

also defines a metric. Is the identity map i : (M, d) → (M, ρ), i(x) = x
continuous?

CC0E3280-C34E-4B5B-B5DE-7B0F0511774C

analysis-qe-i-89c7e

#27      3 of 22



6957E574-8FE5-4F70-9E56-ACCD900BA4D8

analysis-qe-i-89c7e

#27      4 of 22



2. (10 pts) The function f : M → R is called lower semicontinuous if
for all α ∈ R the set {x : f(x) > α} is open. Show that if f is lower
semicontinuous and M is compact then

a) f is bounded below, and

b) f attains a minimum value.
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3. (10 pts)

Let fn(x) =
∑n

j=1
1
nf(x + j

n), where f is a continuous function on R.
Show that the sequence of functions (fn)n∈N converges pointwise to a
continuous function.
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4. (10 pts) Suppose f, g : Rn → R
p are continuous functions.

(a) Show that the set B = {x ∈ R
n : f(x) = g(x)} is closed in R

n.

(b) Let p = 1. Prove that the set C = {x ∈ R
n : f(x) > g(x)} is open

in R
n.
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5. (10 pts) Let the function f : R2 → R be defined by the formula

f(x, y) =

⎧⎪⎨
⎪⎩

xy2

x2 + y4
, if (x, y) �= (0, 0)

0, if (x, y) = (0, 0).

(a) Is f continuous at (0, 0)?

(b) Show that partial derivatives D1f(0, 0) and D2f(0, 0) exist and are
equal to 0.

(c) Is f differentiable at (0, 0)?
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6. (10 pts)

Consider the following equation for x ∈ R with y = (y1, y2) ∈ R
2 as a

parameter:
x3y1 + x2y1y2 + x+ y21y2 = 0. (1)

(a) Prove that there are neighborhoods V of (−1, 1) and U of 1 such
that for every y ∈ V Eq. (??) has a unique solution x = ψ(y) in U .

(b) FindD1ψ(−1, 1) andD2ψ(−1, 1).

(c) Prove that there do not exist neighborhoods V of (−1, 1) and U ′ of
−1 such that for every y ∈ V the equation has a unique solution
x = x(y) ∈ U ′. Hint: Explicitly determine the three solutions for x
in the special case where y1 = −1.
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7. (10 pts) Find the number of zeroes of the function f(z) = z7−8z2+2
in the annulus 1 < |z| < 2.
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8. (10 pts) Does there exist an entire function f such that f
(
1
n

)
= n

n+1?
Hint: Use the Identity Theorem.
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9. (10 pts)

Use the contour integral to compute

∫ ∞

0

x2

x4 + 5x2 + 4
dx.
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