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Instructions:

Do not write your name or any other identifying information on any page
except this cover page.

Use the space below the statement of a problem as well as the back of the
page and the next page for the solution. If more space is needed, use the
blank pages at the end.

All pages must be submitted. If there is work you want ignored, cross it out
(or otherwise indicate its status) or tape a clean sheet over it to create more
space to be used, being careful not to cover the code at the top.

You have three hours to work on these problems. Attempt six problems.
Four complete solutions will earn a pass. Credit for completed parts of
separate problems may combine to result in a pass.

No references are to be used during the exam.
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1. (10 pts) Let (X, d) be a metric space. Let f : X → X be a continuous
map. Assume that for all x, y ∈ X,

d(f(x), f(y)) < d(x, y).

a) Show that f has at most one fixed point.

b) Show that if X is compact, f has exactly one fixed point.
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2. (10 pts) Let K > 0. The function f : [a, b] → R is K-Lipschitz if for
all x, y ∈ [a, b]:

|f(x)− f(y)| ≤ K|x− y|

a) Assume that f has a bounded derivative on (a, b). Show that
there exists K such that f is K-Lipschitz.

b) For every K, give an example of the function that is K-Lipschitz,
but not differentiable.
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3. (10 pts) Prove or disprove:

a) The product of two uniformly continuous functions on R is also
uniformly continuous.

b) The product of two uniformly continuous functions on [0, 1] is
also uniformly continuous.
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4. (10 pts) Let I be a rectangle in R
2 and suppose f is continuous on I.

Prove that there exists a point x0 ∈ I such that
∫
I

f(x) dx = f(x0) vol(I),

where vol(I) is the n-dimensional volume of the rectangle.
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5. (10 pts)

Let function f : R2 → R be defined by the formula

f(x, y) =

⎧⎪⎨
⎪⎩

x3

x2 + y2
, if (x, y) �= (0, 0)

0, if (x, y) = (0, 0).

(a) Is f continuous at (0, 0)?

(b) Show that both partial derivatives D1f(0, 0) and D2f(0, 0) exist
and compute them.

(c) Is f differentiable at (0, 0)?
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6. (10 pts)

Let F : R2 → R
2 be defined by the formula

F (x1, x2) = ex1(cos(x2), sin(x2)).

(a) Find the image of F .

(b) Prove that for every x ∈ R
2 there exists a neighborhood U in R

2

such that F : U → F (U) is a diffeomorphism, but that F is not
injective on all of R2.

(c) Let x = (0, π/3), y = F (x) and let H be the continuous inverse
of F , defined in a neighborhood of y, such that H(y) = x. Give
an explicit formula for H.
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7. (10 pts) Calculate the integral
∫
C

cos z
z3+4z dz, where C is counter-clockwise

oriented circle of radius 2 with center at the point z = i.
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8. (10 pts)

Let D = {|z| < 1}. Consider the set of holomorphic functions f : D →
D such that f(34) = 0. What are the possible values of f ′(34)?
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9. (10 pts)

Let f(z) be an entire function that does not take negative real values.
Show that f is constant. (Hint: consider

√
f).
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