
Email:	_________________________________


Instructions You have three hours to do your work and fifteen minutes to upload the solutions.

You must show your work clearly and justify everything to receive credit.

 Name:	 _________________________________


Submitting your work:

• Each photo must have work from only one problem: if you have multiple problems on
one page, use blank pages to cover other work or crop your photos accordingly.

• If you have trouble uploading, please send photos of individual problems to ksu.edu.

0) Four full problems correctly done will earn a pass. Parts of several problems may
combine to count for a full problem.

1) Do not write your name on any of the pages.

2) This is a closed book exam: no books, no notes, no calculators etc. Only plain papers
and pens should be on your table.

3) You must have your camera on showing your hands and, if possible, at least part of
your faces during the exam.

4) After you receive the exam online by email, if you want you can print it or you can keep
it open on your laptop or cellphone. After that you are allowed to use your computer
or any electronic device during the exam only to read the exam and later to upload it
on Crowdmark. Also you can communicate to the examiner via private chat in Zoom.

5) In case you lose internet connection at some point, you can continue your exam, how-
ever the examiners might consider to have an oral reexamination with you where you
would need to explain steps in your work. You can be asked additional questions. In
case the loss of connection is long, you can the examiner.

6) The exam is supposed to take 3 hours not counting the time of printing or accessing
the problems and uploading your test. If you want you can have a bit of extra time,
but the exam must be uploaded to Crowdmark
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Problem 1 [10 points] Let (an)
∞
n=1 be a sequence of real numbers.

(i) Define what it means for a sequence to be bounded.

(ii) Define what it means for a sequence to be Cauchy.

(iii) Prove that Cauchy sequences are bounded.
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Problem 2 [10 points] Let (X, dX) be a metric space.

(i) Define what it means for a metric space to be compact using open covers.

(ii) Define what it means for a function f : X → R to be continuous at a point
x0 ∈ X.

(iii) Define what it means for a function f : X → R to be uniformly continuous
on X.

(iv) Finally, assuming that (X, dX) is compact and f : X → R is a continuous
function, show that f is necessarily uniformly continuous.
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Problem 3 [10 points] Let Ω ⊂ R
N be measurable and let fj : Ω −→ R≥0 for

j = 1, 2, 3, . . . be non-negative measurable functions.

(i) Write the definition of lim infj→∞ fj using inf’s and sup’s.

(ii) State the Monotone Convergence Theorem

(iii) Use part (ii) to prove Fatou’s Lemma:∫
Ω

lim inf
j→∞

fj ≤ lim inf
j→∞

∫
Ω

fj.

D5FB531E-16C5-4175-ACDC-E37EF1F2C887

analysis-qe-may-24

#20 Page 7 of 18



E69EE68E-05E3-44E3-A64F-3E1DE1D29885

analysis-qe-may-24

#20 Page 8 of 18



Problem 4 [10 points] Let D be a convex complex domain, and let f : D −→ C

be continuous. Assume that for every closed triangular region Δ ⊂ D with the
counterclockwise oriented boundary δ it holds that∫

δ

f(z)dz = 0.

Prove that there exists an analytic function F : D −→ C, such that

F ′(z) = f(z) ∀z ∈ D.
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Problem 5 [10 points] Let D be a complex domain, and let f : D −→ C be a
non-constant analytic function. Assume that z0 ∈ D is a point of local minimum
for the function |f(z)|. Prove that f(z0) = 0.
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Problem 6 [10 points] Calculate using residues:∮
|z|=3

tan(z)

z2
dz.
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