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Instructions: Use the space below the statement of a problem as well as
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at the back.

All pages must be submitted. If there is work to be ignored, either cross it
out (or otherwise indicate its status) or tape a clean sheet over it to allow the
space to be used, being careful not to cover the code at the top. Normally
four complete solutions constitutes a passing score.

No references are to be used during the exam.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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space to be used, being careful not to cover the code at the top. Normally
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.



E E 0C907272-280D-4EDO-905E-C474E15EBB92

- " Applied Math QE 1 August 2016
#3 14 of 18



05280791-3EC9-4FC9-8D68-AC359FCFF045 E F " E

4

Applied Math QE 1 August 2016 -

#3 15 of 18
[=]



E E 0A4D2AD7-CF42-406A-BB6F-0882E366F620

Applied Math QE I August 2016
#3 16 of 18



95054968-EDC9-4C63-A01F-E7ASAFE94F5C E .

Applied Math QE 1 August 2016 .
#3 17 of 18



E E 9EBODA7A-750D-4DEE-AD7A-A1583BE532D7

Applied Math QE I August 2016
#3 18 of 18



EADF116C-1823-4134-93C9-E48836E62EA8 E: E

applied-math-ge-i-august-2016 !
#4 1 of 18

Applied Math Qualifying Exam, August 2016
2016-08-20

Last name ......... ... ... . ..

First name ......... ... ... . .. . . . . .. ... ...

KSU Email ... . .
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out (or otherwise indicate its status) or tape a clean sheet over it to allow the
space to be used, being careful not to cover the code at the top. Normally
four complete solutions constitutes a passing score.

No references are to be used during the exam.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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space to be used, being careful not to cover the code at the top. Normally
four complete solutions constitutes a passing score.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).



Applied Math QE I August 2016
#5 10 of 18




BEE259BB-A0A1-4B51-9883-FE476007D3EB E " E

Applied Math QE 1 August 2016 o
#5 11 of 18

5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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out (or otherwise indicate its status) or tape a clean sheet over it to allow the
space to be used, being careful not to cover the code at the top. Normally
four complete solutions constitutes a passing score.

No references are to be used during the exam.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L

2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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Instructions: Use the space below the statement of a problem as well as
the next page for the solution. If more space is needed, use the blank pages
at the back.

All pages must be submitted. If there is work to be ignored, either cross it
out (or otherwise indicate its status) or tape a clean sheet over it to allow the
space to be used, being careful not to cover the code at the top. Normally
four complete solutions constitutes a passing score.

No references are to be used during the exam.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

I A
AT 0

Let A be a full-rank m x n real matrix with m > n.
x
(T, 2T)T,

(a) Show that the system
_|b
0
has a unique solution (r

(b) Show that the x from (a) minimizes || Az — b||2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.



[=]

E 8F63FBDD-D743-4CE0-8AAB-B9179C729F89

"= Applied Math QE I August 2016
#9 4 of 18



52387D16-2EA4-4C9C-BAFD-416A86CAD597 E ltr E

Applied Math QE 1 August 2016
#9 5 of 18

2. (10 pts)
Let A be the product

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).



E 8EE0C320-9C10-40E4-8F3B-CD3A0066EE13

Applied Math QE I August 2016
#10 10 of 18



Applied Math QE 1 August 2016
#10 11 of 18

5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L

2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.



E 2F28D649-3CB7-450B-8346-607D63334B2F

Applied Math QE I August 2016
#14 4 of 18



80D74929-80D0-4BA3-9E89-3E07EOED31EE E E

Applied Math QE 1 August 2016
#14 5 of 18

2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

I A
AT 0

Let A be a full-rank m x n real matrix with m > n.
x
(T, 2T)T,

(a) Show that the system
_|b
0
has a unique solution (r

(b) Show that the x from (a) minimizes || Az — b||2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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at the back.

All pages must be submitted. If there is work to be ignored, either cross it
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space to be used, being careful not to cover the code at the top. Normally
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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space to be used, being careful not to cover the code at the top. Normally
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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Instructions: Use the space below the statement of a problem as well as
the next page for the solution. If more space is needed, use the blank pages
at the back.

All pages must be submitted. If there is work to be ignored, either cross it
out (or otherwise indicate its status) or tape a clean sheet over it to allow the
space to be used, being careful not to cover the code at the top. Normally
four complete solutions constitutes a passing score.

No references are to be used during the exam.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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Let A be the product
b2 10 11
0 3] |—-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X



E OAAEF61C-2E62-4515-816E-AD370B75B79F

Applied Math QE I August 2016
#19 8 of 18



16711E2C-9504-41BC-BE6C-79A2EA5BE290 E E

Applied Math QE 1 August 2016 ]
#19 9 of 18 -

[=]

4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

I

I T I
I T]

where h is the space between grid points, I is the identity matrix, and
T is the matrix

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant ¢ > 0 (independent of h) such
that every eigenvalue \ of L satisfies |A| < ¢/h?.
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2. (10 pts)
Let A be the product

b2 10 11
03] |-11
1 =2

(a) Find the four spaces R(A), N(A), R(AT), N(AT) (the range and
nullspace of A and AT).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m x n real matrix with m > n.
(a) Show that the system
b
0
has a unique solution (rf, 27)7T.

(b) Show that the x from (a) minimizes || Az — b||2.

I A
AT 0

r

X
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4. (10 pts)
(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0,1) x (0,1)).
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5. (10 pts)

Show that the sequence of functions { f,, }nen, where
folz) = g e "l eR,

is a (Dirac) delta sequence.
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6. (10 pts)
Let K : L?(0,1) — L?(0,1) be the following operator:

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

where ) is a real number.

(b) Derive necessary and sufficient conditions on A and f € L*(0,1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on X and f € L*(0, 1) for
the uniqueness of solutions for this equation.
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