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four complete solutions constitutes a passing score.

No references are to be used during the exam.

1

FC96AEC2-A4DC-4868-8EB6-C41E82F4C190

applied-math-qe-i-august-2016

#1      1 of 18



2

E3272AAD-830B-4ECC-9AF9-17B4A876FF35

Applied Math QE I August 2016

#1      2 of 18



1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.

3

96DD6C56-7409-4F84-9DBD-DB7236730EEA

Applied Math QE I August 2016

#1      3 of 18



4

11FFFF1D-C94C-4243-8BEA-DEB680A1C4C8

Applied Math QE I August 2016

#1      4 of 18



2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.

7

C51DDA8A-295A-4B86-8EC0-38D3A4C01E52

Applied Math QE I August 2016

#2      7 of 18



8

73E1ACF2-FFBE-4EE9-9CFF-51E90FE26009

Applied Math QE I August 2016

#2      8 of 18



4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.

7

22EEC5DE-E67F-41D4-B9A5-6B4A6B806638

Applied Math QE I August 2016

#4      7 of 18



8

FEAD0434-C6C0-465F-BE72-7667E7F9B9F9

Applied Math QE I August 2016

#4      8 of 18



4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.

13

E1CDA4A1-1048-4C26-83EC-614C7E0E8CCC

Applied Math QE I August 2016

#6      13 of 18



14

5FB530B7-EC63-4423-B096-8DF0BBFA7138

Applied Math QE I August 2016

#6      14 of 18



15

A0ABCDD9-C9BB-435B-9F8A-2F9B8E04C4D0

Applied Math QE I August 2016

#6      15 of 18



16

F9BBE43A-0725-48B8-90C4-3B1014F533D4

Applied Math QE I August 2016

#6      16 of 18



17

439DFEFE-59D4-4059-BD35-F490AC4B4358

Applied Math QE I August 2016

#6      17 of 18



18

7570CE7B-0A83-4FEA-B338-F311DA74FAF1

Applied Math QE I August 2016

#6      18 of 18



Applied Math Qualifying Exam, August 2016

2016-08-20

Last name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KSU Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Instructions: Use the space below the statement of a problem as well as
the next page for the solution. If more space is needed, use the blank pages
at the back.

All pages must be submitted. If there is work to be ignored, either cross it
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.

13

5F1E59C6-A5BF-4122-9832-AE2BEA4DECD6

Applied Math QE I August 2016

#7      13 of 18



14

FC615657-099E-4677-8215-608DD911AF93

Applied Math QE I August 2016

#7      14 of 18



15

653FB207-F1B4-4761-BE0A-A180DBFEB271

Applied Math QE I August 2016

#7      15 of 18



16

7A00C71F-6C9C-455B-8982-CE57244B4C10

Applied Math QE I August 2016

#7      16 of 18



17

0CFB334E-9E38-4158-BE73-02378D972CAD

Applied Math QE I August 2016

#7      17 of 18



18

BDCC7D88-CAE3-4979-90B7-EC1EBA1EDF8C

Applied Math QE I August 2016

#7      18 of 18



Applied Math Qualifying Exam, August 2016

2016-08-20

Last name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KSU Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Instructions: Use the space below the statement of a problem as well as
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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Instructions: Use the space below the statement of a problem as well as
the next page for the solution. If more space is needed, use the blank pages
at the back.

All pages must be submitted. If there is work to be ignored, either cross it
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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Instructions: Use the space below the statement of a problem as well as
the next page for the solution. If more space is needed, use the blank pages
at the back.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.

7

01C57A92-6773-4CA5-ACF4-BC11233AD43E

Applied Math QE I August 2016

#11      7 of 18



8

2492AC89-5A0C-4E0D-A9FF-C1B0C5BB4F06

Applied Math QE I August 2016

#11      8 of 18



4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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Instructions: Use the space below the statement of a problem as well as
the next page for the solution. If more space is needed, use the blank pages
at the back.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.

3

D4BE2DAE-BC5D-487E-9960-D7184A78840E

Applied Math QE I August 2016

#15      3 of 18



4

0F6D46CB-EF59-4A6C-96B8-05E0175972F0

Applied Math QE I August 2016

#15      4 of 18



2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.

11

2AB32979-9F8F-48FF-8113-DBF1624CAA18

Applied Math QE I August 2016

#15      11 of 18



12

283DB632-EC67-4AD4-A9FC-50A7D9BD2FE6

Applied Math QE I August 2016

#15      12 of 18



6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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Instructions: Use the space below the statement of a problem as well as
the next page for the solution. If more space is needed, use the blank pages
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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1. (10 pts)

The standard five-point stencil approximation of the Laplacian on a
square grid using row-by-row ordering takes the block form

L =
1

h2



T I

I T I
. . . . . . . . .

I T I

I T


,

where h is the space between grid points, I is the identity matrix, and
T is the matrix

T =



−4 1

1 −4 1
. . . . . . . . .

1 −4 1

1 −4


.

(a) Show that L is negative semidefinite.

(b) Prove that there exists a constant c > 0 (independent of h) such
that every eigenvalue λ of L satisfies |λ| ≤ c/h2.
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2. (10 pts)

Let A be the product

A =

1 2

0 1

1 −2


[

1 0

0 3

][
1 1

−1 1

]
.

(a) Find the four spaces R(A), N(A), R(AT ), N(AT ) (the range and
nullspace of A and AT ).

(b) Find the singular values of A.
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3. (10 pts)

Let A be a full-rank m× n real matrix with m ≥ n.

(a) Show that the system[
I A

AT 0

][
r

x

]
=

[
b

0

]

has a unique solution (rT , xT )T .

(b) Show that the x from (a) minimizes ‖Ax− b‖2.
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4. (10 pts)

(a) State the definition of complete orthonormal set in a Hilbert space.

(b) Provide an example of a complete orthonormal set in
L2((0, 1)× (0, 1)).
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5. (10 pts)

Show that the sequence of functions {fn}n∈N, where

fn(x) =
n

2
e−n|x|, x ∈ R,

is a (Dirac) delta sequence.
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6. (10 pts)

Let K : L2(0, 1)→ L2(0, 1) be the following operator:

Ku(x) =

∫ 1

0

u(y) dy.

(a) Show that K is a self-adjoint compact operator. Provide direct
proofs based on the definitions of self-adjointness and compactness of
an operator.

Consider the integral equation

u(x)− λ
∫ 1

0

u(y) dy = f(x),

where λ is a real number.

(b) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1)
for the existence of solutions for this equation.

(c) Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the uniqueness of solutions for this equation.
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