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Instructions:

Do not write your name or any other identifying information on any page
except this cover page.

Use the space below the statement of a problem as well as the next page for
the solution. If more space is needed, use the blank pages at the back.

All pages must be submitted. If there is work to be ignored, either cross it
out (or otherwise indicate its status) or tape a clean sheet over it to allow
the space to be used, being careful not to cover the code at the top.

You have three hours to work on these problems. Attempt all problems.
Four complete solutions will earn a passing mark. Credit for completed
parts of separate problems may combine to constitute a pass as well. You
may use results from one part of a problem (even if you did not solve it) in
your solution to a subsequent part.

No references are to be used during the exam.
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1. (10 pts)

Let A be an n× n nonsingular matrix. Show that:

min

{ ||δA||2
||A||2 : A+ δA is singular

}
=

1

κ2(A)
,

where κ2(A) = ||A||2||A−1||2 is the condition number of the matrix A
with respect to the matrix operator norm || · ||2 corresponding to the
Euclidean norm on the space R

n.
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2. (10 pts)

Let S ∈ C
n×n be a skew-Hermitian, i.e S∗ = −S. Show the following:

(1) The eigenvalues of S are purely imaginary.

(2) The matrix I − S is invertible.
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3. (10 pts)

Consider the matrix A:

A =

⎡
⎢⎢⎣

1 1 0

1 −2 1

1 1 −1

⎤
⎥⎥⎦ .

(1) Using the Gram-Schmidt algorithm, find the QR-factorization of
the matrix A.

(2) Use the QR factorization from step (1) to solve the system of linear
equations Ax = b with b = [2, 0, 1]T .

(3) Find the matrix of an orthogonal projection on the linear subspace
of R3 spanned by the first two columns of the matrix A. (Hint: the
matrix of an orthogonal projection on a plane in R

3 can be found by
using the formula P = I − nnT where n is a unit normal to the plane
written as a column vector).
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4. (10 pts)

Suppose f(x) and g(x) are 2π periodic functions with Fourier series
representations

f(x) =
∞∑

k=−∞
fk e

ikx, g(x) =
∞∑

k=−∞
gk e

ikx.

Find the Fourier representation of

h(x) =

∫ 2π

0

f(x− y) g(y) dy.

0DF44C92-8CAC-4661-92D6-B9CB574D7090

applied-math

#1      9 of 18



340CDEF1-861B-4919-B29E-5EE990B21182

applied-math

#1      10 of 18



5. (10 pts)

Let

w(x) =

{
3x , x > −1

x2 , x ≤ −1
.

Find the distributional derivative of w.
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6. (10 pts)

Consider the integral equation

u(x)− λ

∫ x

0

x u(y) dy = f(x),

where λ �= 0 is a real number.

Derive necessary and sufficient conditions on λ and f ∈ L2(0, 1) for
the existence of solutions for this equation.
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