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1. (10 pts)
Let H be a 3 x 3 Hilbert matrix:
1 1/2 1/3
H=1|1/2 1/3 1/4
1/3 1/4 1/5

(a) Find the decomposition H = LDL", where D is a 3 x 3 diagonal
matrix and L is a 3 X 3 lower unit triangular matrix.

(b) Give an example of a 3 x 3 symmetric matrix M which cannot be
decomposed in the way described above.
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2. (10 pts) An n x n real matrix A is called positive definite if for any
non-zero vector z € R" it follows that z” Az > 0.

Let A be a positive definite matrix.
(a) Prove that A is non-singular.

(b) Does it follow from the definition above that A is symmetric? If yes,
prove it. If no, give an example of a non-symmetric positive definite
matrix (be sure to show explicitly that your matrix is positive definite).
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3. (10 pts) Let A be an n x n real symmetric matrix. Prove the following
property: limy_,o A¥ = O,y if and only if p(A) = maxy |[\y| < 1,
where \; (k= 1,2,...n) are the eigenvalues of the matrix A and O,

is the n x n zero matrix.

Hint: Use the spectral theorem for symmetric matrices.
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4. (10 pts) Assume {¢,} ey is an orthonormal basis for L?(a,b). Define

um (2, Y) = on()Pm(y), for (z,y) € (a,b) x (a,b).

Show that {tm }n.men forms an orthonormal basis for L? ((a, b) x (a,b)).
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a) Find the eigenvalues and eigenfunctions of the integral operator

[=]

5. (10 pts)

Ku(z) = / ke, y) uly) dy, @ < [0,1],

where

Kz, y) = y(r — 1), OSJJSySl_
zy—1), 0<y<z<l1

b) Find a spectral decomposition of K (that is, apply the Spectral
Theorem to find a series representation for Ku).
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6. (8 pts) Show that the derivative operator, defined by
Lf=1Tf,

where
L:(C[0, 1], || - [o) — (C10, 1], [ - [[o0) ,

with domain D(L) = C[0, 1], is linear and unbounded.
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