
1. (10 pts)

Let H be a 3× 3 Hilbert matrix:

H =

⎛
⎜⎜⎝

1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

⎞
⎟⎟⎠

(a) Find the decomposition H = LDLT , where D is a 3 × 3 diagonal
matrix and L is a 3× 3 lower unit triangular matrix.

(b) Give an example of a 3× 3 symmetric matrix M which cannot be
decomposed in the way described above.
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2. (10 pts) An n × n real matrix A is called positive definite if for any
non-zero vector x ∈ R

n it follows that xTAx > 0.

Let A be a positive definite matrix.

(a) Prove that A is non-singular.

(b) Does it follow from the definition above that A is symmetric? If yes,
prove it. If no, give an example of a non-symmetric positive definite
matrix (be sure to show explicitly that your matrix is positive definite).
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3. (10 pts) Let A be an n×n real symmetric matrix. Prove the following
property: limk→∞Ak = On×n if and only if ρ(A) = maxk |λk| < 1,
where λk (k = 1, 2, ...n) are the eigenvalues of the matrix A and On×n

is the n× n zero matrix.

Hint: Use the spectral theorem for symmetric matrices.
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4. (10 pts) Assume {φn}n∈N is an orthonormal basis for L2(a, b). Define

ψnm(x, y) = φn(x)φm(y), for (x, y) ∈ (a, b)× (a, b).

Show that {ψnm}n,m∈N forms an orthonormal basis for L2 ((a, b)× (a, b)).
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5. (10 pts)

a) Find the eigenvalues and eigenfunctions of the integral operator

Ku(x) =

∫ 1

0

k(x, y) u(y) dy, x ∈ [0, 1],

where

k(x, y) =

⎧⎨
⎩
y(x− 1), 0 ≤ x ≤ y ≤ 1

x(y − 1), 0 ≤ y ≤ x ≤ 1
.

b) Find a spectral decomposition of K (that is, apply the Spectral
Theorem to find a series representation for Ku).
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6. (8 pts) Show that the derivative operator, defined by

Lf = f ′,

where
L : (C[0, 1], ‖ · ‖∞) −→ (C[0, 1], ‖ · ‖∞) ,

with domain D(L) = C1[0, 1], is linear and unbounded.
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