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Problem 1 [10 points] Consider the matrix decomposition:

A =

 1 4
−2 2

1 0

[ −2 0
0 3

] [
1 2
−2 1

]
(a) Label the columns of the leftmost matrix and the rows of the rightmost matrix,

and use them to write A as a sum of outer products matrices;

(b) deduce from (a) the singular value decomposition of A (Justify);

(c) write down a matrix A1 which is a best rank-one approximation of A;

(d) compute the condition number κ2(A).

(a) Write a1 =

 1
−2

1

, a2 =

 4
2
0

, b1 =

[
1
2

]
and b2 =

[
−2

1

]
. Then

A = −2a1b
T
1 + 3a2b

T
2 .

(b) Note that aT1 a2 = bT1 b2 = 0. So we let

u2 := − a1
‖a1‖

=
1√
6

 −1
2
−1

 and u1 :=
a2
‖a2‖

=
1√
20

 4
2
0


Also

v2 :=
b1
‖b1‖

=
1√
5

[
1
2

]
and v1 :=

b2
‖b2‖

=
1√
5

[
−2

1

]
Then

A = 3‖a2‖‖b2‖u1vT1 + 2‖a1‖‖b1‖u2vT2 = 30u1v
T
1 + 2

√
30u2v

T
2

In particular, by uniqueness, σ1 = 30 and σ2 = 3
√

30.

(c) Define A1 = 30u1v
T
1 = 3a2b

T
2 = 6

 −4 2
−2 1

0 0


(d) Note A is full-rank, so κ2(A) = σ1

σ2
=
√
30
2 .
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Problem 2 [10 points] Find explicit constants C1, C2 > 0 such that

C1‖A‖max ≤ ‖A‖2 ≤ C2‖A‖max

for an arbitrary n-by-n matrix A, where ‖A‖2 is the operator norm corresponding
to the Euclidean 2-norm on Rn, and ‖A‖max is the max norm maxi,j |A(i, j)|. Aim
for C1 = 1 and C2 = n, or at least n3/2.

For 1 ≤ i, j ≤ n:

|A(i, j)| = |eTi Aej| ≤ ‖A‖2‖ei‖‖ej‖ = ‖A‖2.

So ‖A‖max ≤ ‖A‖2.
On the other hand, if v is the direction of maximum stretch:

‖A‖2 = σ = ‖Av‖ =

√√√√ n∑
i=1

∣∣∣∣∣
n∑
j=1

A(i, j)v(j)

∣∣∣∣∣
2

≤ ‖A‖max

√√√√ n∑
i=1

(
n∑
j=1

|v1(j)|

)2

≤ n3/2‖A‖max

where we used the fact that |v(j)| ≤ 1 for all j’s.
Or using Cauchy-Schwarz:√√√√ n∑

i=1

(
n∑
j=1

|v(j)|

)2

≤

√√√√ n∑
i=1

n

n∑
j=1

|v(j)|2 = n.
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Problem 3 [10 points] Assume the matrix A ∈ Rn×n is symmetric and positive
semi-definite.

(a) Write down the “quadratic form definition” of what it means for A to be
positive semi-definite.

(b) Assume λ ∈ R is an eigenvalue of A. Show that λ ≥ 0.

(c) Recall that A admits an orthonormal basis of eigenvectors {v1, . . . , vn}, so that
A is orthogonally diagonalizable via the orthoonal matix Q = [v1 · · · vn]. In
particular, given u ∈ Rn\{0}, we can write u =

∑n
k=1(u

Tvk)vk =
∑n

k=1 ckvk =
Qx, where x = [c1 · · · cn]T . Use this fact to show that the Rayleigh quotient

ρ(A, u) :=
uTAu

uTu

for a vector u ∈ Rn \ {0}, can be interpreted as a weighted average

1

(
∑n

j=1 aj)

n∑
j=1

ajλj

of the eigenvalues of A, with aj ≥ 0. Indeed, find the coefficients aj.

(a) xTAx ≥ 0 for all x ∈ Rn \ {0}.
(b) There is x 6= 0 such that Ax = λx. Then

0 ≤ xTAx = xT (λx) = λ‖x‖2.

So λ ≥ 0.
(c) Let v1, . . . , vn be an orthonormal basis of eigenvectors for A with respective
eigenvalues λ1 ≥ · · · ≥ λn ≥ 0. Let Q = [v1 · · · vn] be the orthogonal matrix
corresponding to the ONB and D = diag(λ1, . . . , λn). Then A = QDQT . Given,
u 6= 0, write u =

∑n
k=1(u

Tvk)vk =
∑n

k=1 ckvk = Qx, where x = [c1 · · · cn]T . Then

ρ(A, u) =
xTQTAQx

xTQTQx
=
xTDx

xTx
=

∑n
k=1 c

2
kλk∑n

k=1 c
2
k

.

So the coefficients are ak := c2k = (uTvk)
2.
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Problem 4 [10 points] Find the second distributional derivative D2u of the func-
tion

u(x) =

{
1− |x|, |x| < 1

0, |x| ≥ 1,
for x ∈ R.

By definition:

〈D2u, ϕ〉 = 〈u, ϕ′′〉 =

∫ ∞
−∞

u(x)ϕ′′(x)dx =

∫ 1

−1
(1− |x|)ϕ′′(x)dx

=

∫ 0

−1
(1 + x)ϕ′′(x)dx+

∫ 1

0

(1− x)ϕ′′(x)dx

= (1 + x)ϕ′(x)
∣∣∣0
−1
−
∫ 0

−1
ϕ′(x)dx+ (1− x)ϕ′(x)

∣∣∣1
0

+

∫ 1

0

ϕ′(x)dx

= ϕ(−1) + ϕ(1)− 2ϕ(0) = 〈δ−1, ϕ〉+ 〈δ1, ϕ〉 − 2〈δ0, ϕ〉

Then D2u = δ−1 + δ1 − 2δ0, where δx0 is a Dirac delta centered at x0.
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Problem 5 [10 points] Find the eigenvalues and eigenfunctions of the integral
operator

(Ku)(x) =

∫ 1

0

k(x, y)u(y)dy,

where k(x, y) = min{x, y}, for 0 ≤ x ≤ 1.

(Ku)(x) =

∫ 1

0

k(x, y)u(y)dy =

∫ x

0

yu(y)dy +

∫ 1

x

xy(y)dy.

To find eigenvalues and eigenfunctions we need to solve Ku = λu, ie.

λu(x) =

∫ x

0

yu(y)dy +

∫ 1

x

xy(y)dy.

Differentiating,

λu′(x) =

∫ 1

x

u(y)dy and λu′′(x) = −u(x)

The boundary conditions are u(0) = 0 and u′(1) = 0. To solve the boundary value
problem λu′′ + u = 0 consider the equation

r2 +
1

λ
= 0

• Case 1: λ < 0. Then r1,2 = ± 1√
−λ , and u = C1e

x/
√
−λ + C2e

−x/
√
−λ. To satisfy

the boundary conditions we get C1 = C2 = 0.
• Case 2: λ > 0. Then r1,2 = ± i√

λ
, and u = C1 cos x√

λ
+C2 sin x√

λ
. Here u(0) = 0

implies C1 = 0 and u′(1) = 0 implies

1√
λ

=
π

2
+ πk, k = 0, 1, 2, . . .

So

λk =
(π

2
+ πk

)−2
and uk(x) = sin

((π
2

+ πk
)
x
)
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Problem 6 [10 points] Consider the differential operator

Lu(x) = u′′(x) + k2u(x), k 6= 0,

subject to the homogeneous boundary conditions

u′(0) = 0, u(π) = 0.

(1) Find the Green’s function for this operator with the given boundary condi-
tions.

(2) Using the Green’s function from the previous step, solve the boundary value
problem:

u′′(x) + k2u(x) = f(x), u′(0) = 1, u(π) = 0.

(1) Solve the equation u′′+k2u = 0. Note that r2 +k2 = 0 implies r = ±ki. Thus
u(x) = C1 cos kx + C2 sin kx. Now find two solutions u1, u2 such that u′1(0) = 0
and u2(π) = 0. We get u1(x) = cos kx and u2(x) = sin kx. Build the Green’s
function as

G(x, y) =

{
1

W (y)u1(x)u2(y), 0 ≤ x < y ≤ π
1

W (y)u1(y)u2(x), 0 ≤ y < x ≤ π

where

W (y) =

∣∣∣∣ cos ky sin ky
−k sin ky k cos ky

∣∣∣∣ = k

Thus

G(x, y) =

{
1
k cos kx sin ky, 0 ≤ x < y ≤ π
1
k sin kx cos ky, 0 ≤ y < x ≤ π

(2) The solution will look like

u(x) =

∫ π

0

G(x, y)f(y)dy + C1u1(x) + C2u2(y)

where C1 = u(π)
u1(π)

= 0 and C2 = u′(0)
u′2(0)

= 1
k .
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