Applied Math Qual Exam Spring 2019 Pietro Poggi-Corradini Anna Zemlyanova

Name:_____

You must show your work clearly and justify everything to receive credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Problem 1 [10 points] Consider the matrix decomposition:

$$A = \begin{bmatrix} 1 & 4 \\ -2 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$

- (a) Label the columns of the leftmost matrix and the rows of the rightmost matrix, and use them to write A as a sum of outer products matrices;
- (b) deduce from (a) the singular value decomposition of A (Justify);
- (c) write down a matrix A_1 which is a best rank-one approximation of A;
- (d) compute the condition number $\kappa_2(A)$.

(a) Write
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix}$, $b_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $b_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. Then
$$A = -2a_1b_1^T + 3a_2b_2^T.$$

(b) Note that $a_1^T a_2 = b_1^T b_2 = 0$. So we let

$$u_2 := -\frac{a_1}{\|a_1\|} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\2\\-1 \end{bmatrix} \text{ and } u_1 := \frac{a_2}{\|a_2\|} = \frac{1}{\sqrt{20}} \begin{bmatrix} 4\\2\\0 \end{bmatrix}$$

Also

$$v_2 := \frac{b_1}{\|b_1\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$
 and $v_1 := \frac{b_2}{\|b_2\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1 \end{bmatrix}$

Then

$$A = 3||a_2|| ||b_2||u_1v_1^T + 2||a_1|| ||b_1||u_2v_2^T = 30u_1v_1^T + 2\sqrt{30}u_2v_2^T$$

In particular, by uniqueness, $\sigma_1 = 30$ and $\sigma_2 = 3\sqrt{30}$.
(c) Define $A_1 = 30u_1v_1^T = 3a_2b_2^T = 6\begin{bmatrix} -4 & 2\\ -2 & 1\\ 0 & 0 \end{bmatrix}$
(d) Note A is full-rank, so $\kappa_2(A) = \frac{\sigma_1}{\sigma_2} = \frac{\sqrt{30}}{2}$.

Problem 2 [10 points] Find explicit constants $C_1, C_2 > 0$ such that

$$C_1 ||A||_{max} \le ||A||_2 \le C_2 ||A||_{max}$$

for an arbitrary *n*-by-*n* matrix A, where $||A||_2$ is the operator norm corresponding to the Euclidean 2-norm on \mathbb{R}^n , and $||A||_{max}$ is the max norm $\max_{i,j} |A(i,j)|$. Aim for $C_1 = 1$ and $C_2 = n$, or at least $n^{3/2}$.

For $1 \leq i, j \leq n$:

$$|A(i,j)| = |e_i^T A e_j| \le ||A||_2 ||e_i|| ||e_j|| = ||A||_2.$$

So $||A||_{max} \le ||A||_2$.

On the other hand, if v is the direction of maximum stretch:

$$||A||_{2} = \sigma = ||Av|| = \sqrt{\sum_{i=1}^{n} \left|\sum_{j=1}^{n} A(i,j)v(j)\right|^{2}} \le ||A||_{max} \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} |v_{1}(j)|\right)^{2}} \le n^{3/2} ||A||_{max}$$

where we used the fact that $|v(j)| \leq 1$ for all j's.

Or using Cauchy-Schwarz:

$$\sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} |v(j)|\right)^2} \le \sqrt{\sum_{i=1}^{n} n \sum_{j=1}^{n} |v(j)|^2} = n.$$

Problem 3 [10 points] Assume the matrix $A \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite.

- (a) Write down the "quadratic form definition" of what it means for A to be positive semi-definite.
- (b) Assume $\lambda \in \mathbb{R}$ is an eigenvalue of A. Show that $\lambda \geq 0$.
- (c) Recall that A admits an orthonormal basis of eigenvectors $\{v_1, \ldots, v_n\}$, so that A is orthogonally diagonalizable via the orthonal matrix $Q = [v_1 \cdots v_n]$. In particular, given $u \in \mathbb{R}^n \setminus \{0\}$, we can write $u = \sum_{k=1}^n (u^T v_k) v_k = \sum_{k=1}^n c_k v_k = Qx$, where $x = [c_1 \cdots c_n]^T$. Use this fact to show that the Rayleigh quotient

$$\rho(A, u) := \frac{u^T A u}{u^T u}$$

for a vector $u \in \mathbb{R}^n \setminus \{0\}$, can be interpreted as a weighted average

$$\frac{1}{\left(\sum_{j=1}^{n} a_{j}\right)} \sum_{j=1}^{n} a_{j} \lambda_{j}$$

of the eigenvalues of A, with $a_j \ge 0$. Indeed, find the coefficients a_j .

(a) $x^T A x \ge 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$. (b) There is $x \ne 0$ such that $Ax = \lambda x$. Then

$$0 \le x^T A x = x^T (\lambda x) = \lambda ||x||^2.$$

So $\lambda \geq 0$.

(c) Let v_1, \ldots, v_n be an orthonormal basis of eigenvectors for A with respective eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$. Let $Q = [v_1 \cdots v_n]$ be the orthogonal matrix corresponding to the ONB and $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Then $A = QDQ^T$. Given, $u \neq 0$, write $u = \sum_{k=1}^n (u^T v_k) v_k = \sum_{k=1}^n c_k v_k = Qx$, where $x = [c_1 \cdots c_n]^T$. Then

$$\rho(A, u) = \frac{x^T Q^T A Q x}{x^T Q^T Q x} = \frac{x^T D x}{x^T x} = \frac{\sum_{k=1}^n c_k^2 \lambda_k}{\sum_{k=1}^n c_k^2}.$$

So the coefficients are $a_k := c_k^2 = (u^T v_k)^2$.

Problem 4 [10 points] Find the second distributional derivative D^2u of the function

$$u(x) = \begin{cases} 1 - |x|, & |x| < 1\\ 0, & |x| \ge 1, \end{cases} \quad \text{for } x \in \mathbb{R}.$$

By definition:

$$\langle D^2 u, \varphi \rangle = \langle u, \varphi'' \rangle = \int_{-\infty}^{\infty} u(x) \varphi''(x) dx = \int_{-1}^{1} (1 - |x|) \varphi''(x) dx$$

$$= \int_{-1}^{0} (1 + x) \varphi''(x) dx + \int_{0}^{1} (1 - x) \varphi''(x) dx$$

$$= (1 + x) \varphi'(x) \Big|_{-1}^{0} - \int_{-1}^{0} \varphi'(x) dx + (1 - x) \varphi'(x) \Big|_{0}^{1} + \int_{0}^{1} \varphi'(x) dx$$

$$= \varphi(-1) + \varphi(1) - 2\varphi(0) = \langle \delta_{-1}, \varphi \rangle + \langle \delta_{1}, \varphi \rangle - 2 \langle \delta_{0}, \varphi \rangle$$

Then $D^2 u = \delta_{-1} + \delta_1 - 2\delta_0$, where δ_{x_0} is a Dirac delta centered at x_0 .

Problem 5 [10 points] Find the eigenvalues and eigenfunctions of the integral operator

$$(Ku)(x) = \int_0^1 k(x, y)u(y)dy,$$

where $k(x, y) = \min\{x, y\}$, for $0 \le x \le 1$.

$$(Ku)(x) = \int_0^1 k(x, y)u(y)dy = \int_0^x yu(y)dy + \int_x^1 xy(y)dy.$$

To find eigenvalues and eigenfunctions we need to solve $Ku = \lambda u$, ie.

$$\lambda u(x) = \int_0^x y u(y) dy + \int_x^1 x y(y) dy.$$

Differentiating,

$$\lambda u'(x) = \int_x^1 u(y) dy$$
 and $\lambda u''(x) = -u(x)$

The boundary conditions are u(0) = 0 and u'(1) = 0. To solve the boundary value problem $\lambda u'' + u = 0$ consider the equation

$$r^2 + \frac{1}{\lambda} = 0$$

• Case 1: $\lambda < 0$. Then $r_{1,2} = \pm \frac{1}{\sqrt{-\lambda}}$, and $u = C_1 e^{x/\sqrt{-\lambda}} + C_2 e^{-x/\sqrt{-\lambda}}$. To satisfy the boundary conditions we get $C_1 = C_2 = 0$. • Case 2: $\lambda > 0$. Then $r_{1,2} = \pm \frac{i}{\sqrt{\lambda}}$, and $u = C_1 \cos \frac{x}{\sqrt{\lambda}} + C_2 \sin \frac{x}{\sqrt{\lambda}}$. Here u(0) = 0 implies $C_1 = 0$ and u'(1) = 0 implies

$$\frac{1}{\sqrt{\lambda}} = \frac{\pi}{2} + \pi k, \qquad k = 0, 1, 2, \dots$$

So

$$\lambda_k = \left(\frac{\pi}{2} + \pi k\right)^{-2}$$
 and $u_k(x) = \sin\left(\left(\frac{\pi}{2} + \pi k\right)x\right)$

Problem 6 [10 points] Consider the differential operator

$$Lu(x) = u''(x) + k^2 u(x), \ k \neq 0,$$

subject to the homogeneous boundary conditions

$$u'(0) = 0, \ u(\pi) = 0.$$

- (1) Find the Green's function for this operator with the given boundary conditions.
- (2) Using the Green's function from the previous step, solve the boundary value problem:

$$u''(x) + k^2 u(x) = f(x), \ u'(0) = 1, \ u(\pi) = 0.$$

(1) Solve the equation $u'' + k^2 u = 0$. Note that $r^2 + k^2 = 0$ implies $r = \pm ki$. Thus $u(x) = C_1 \cos kx + C_2 \sin kx$. Now find two solutions u_1, u_2 such that $u'_1(0) = 0$ and $u_2(\pi) = 0$. We get $u_1(x) = \cos kx$ and $u_2(x) = \sin kx$. Build the Green's function as

$$G(x,y) = \begin{cases} \frac{1}{W(y)} u_1(x) u_2(y), & 0 \le x < y \le \pi \\ \frac{1}{W(y)} u_1(y) u_2(x), & 0 \le y < x \le \pi \end{cases}$$

where

$$W(y) = \begin{vmatrix} \cos ky & \sin ky \\ -k\sin ky & k\cos ky \end{vmatrix} = k$$

Thus

$$G(x,y) = \begin{cases} \frac{1}{k}\cos kx\sin ky, & 0 \le x < y \le \pi\\ \frac{1}{k}\sin kx\cos ky, & 0 \le y < x \le \pi \end{cases}$$

(2) The solution will look like

$$u(x) = \int_0^{\pi} G(x, y) f(y) dy + C_1 u_1(x) + C_2 u_2(y)$$

where $C_1 = \frac{u(\pi)}{u_1(\pi)} = 0$ and $C_2 = \frac{u'(0)}{u'_2(0)} = \frac{1}{k}$.