Applied Math Qual Exam Fall 2021 Dinh-Liem Nguyen Pietro Poggi-Corradini

Name:_____

Problem 1 [10 points] Let $A \in \mathbb{R}^{N \times N}$, with rank(A) = 1.

- (a) Show that A can be written as an outer product ab^T , with $a, b \in \mathbb{R}^N \setminus \{0\}$.
- (b) Give an interpretation of the fundamental subspaces of A, the kernel Ker(A) and the range Ran(A), in terms of the vectors a and b in (a).
- (c) Find the singular value decomposition (SVD) of A. How many non-zero singular values are there?

Problem 2 [10 points] Let $A \in \mathbb{R}^{N \times N}$. Recall that the operator norm of A is

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||},$$

where ||x|| is the usual Euclidean norm.

- (a) Show that if $A^T = A$, then $||A|| = \max_{j=1,\dots,N} |\lambda_j(A)|$, where $\lambda_j(A)$ denotes the eigenvalues of A. Hint: Use the Spectral Theorem for symmetric matrices.
- (b) Suppose A is positive definite. Write and justify a formula for the condition number of A in terms of its eigenvalues.

Problem 3 [10 points] Assume $A \in \mathbb{R}^{n \times n}$ is symmetric and $v \in \mathbb{R}^n \setminus \{0\}$. Set $\hat{A} := A + vv^T$. Let $\alpha_1 \leq \cdots \leq \alpha_n$ and $\hat{\alpha}_1 \leq \cdots \leq \hat{\alpha}_n$ be the eigenvalues for A and \hat{A} respectively. Use the Courant-Fischer Theorem to show that, for $j = 1, \ldots, n$,

$$\hat{\alpha}_j \le \alpha_j + \|v\|^2,$$

where ||v|| is the norm of v.

Hint:

Courant-Fischer Theorem: Let H be an $N \times N$ real symmetric matrix. Consider the eigenvalues ordered so that $\lambda_1(H) \leq \cdots \leq \lambda_N(H)$. Then:

$$\lambda_k(H) = \min_{S \in \mathcal{W}_k} \max_{u \in S \setminus \{0\}} \frac{u^T H u}{u^T u} = \max_{T \in \mathcal{W}_{N-k+1}} \min_{u \in T \setminus \{0\}} \frac{u^T H u}{u^T u}$$
(1)

where $\mathcal{W}_j := \{ U \subset \mathbb{R}^N : U \text{ is a linear subspace of } \mathbb{R}^N \text{ and } \dim U = j \}.$

Problem 4 [10 points] Show that for all x, y in a real inner product space

$$4(x,y) = \|x+y\|^2 - \|x-y\|^2.$$

For a complex inner product space, find a similar expression for (x, y) in terms of norms of combinations of x and y.

Problem 5 [10 points] Let H be a Hilbert space and $f : H \to \mathbb{R}$ be a linear functional. Show that f is continuous if and only if it is bounded.

Problem 6 [10 points] Let H be a Hilbert space. Show that if $A : H \to H$ is a self-adjoint operator, then all its eigenvalues are real, and eigenvectors belonging to different eigenvalues are orthogonal.