Applied Math Qual Exam Spring 2021 Dinh-Liem Nguyen Pietro Poggi-Corradini

Name:_____

You must show your work clearly and justify everything to receive credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Problem 1 [10 points] Let $A \in \mathbb{R}^{N \times N}$, with rank(A) = 1.

(a) Show that A can be written as an outer product ab^T , with $a, b \in \mathbb{R}^N \setminus \{0\}$.

Since rank(A) = 1, we have $A \neq 0$. Let b^T be a non-zero row of A. Then, every row of A is of the form $a_j b^T$ for some real number $a_j \in \mathbb{R}, j = 1, ..., N$. Let $a := [\cdots a_j \cdots]^T$. Then $A = ab^T$, and $a \neq 0$ again because rank(A) = 1.

(b) Give an interpretation of the fundamental subspaces of A, the kernel Ker(A) and the range Ran(A), in terms of the vectors a and b in (a).

Write

$$A = ab^{T} = \begin{bmatrix} \vdots & \vdots \\ b_{1}a & \cdots & b_{n}a \\ \vdots & \vdots \end{bmatrix}$$

Then, we see that the column space of A is spanned by the vector a. Also, since $a \neq 0$, $Ax = ab^T x = 0$, if and only if $b^T x = 0$. Therefore, ker(A) is the orthogonal complement of the line spanned by b.

(c) Assume that $b^T a \neq 0$ and compute the eigenvalues and eigenvectors of A in terms of a and b, in this case.

By Rank-Nullity, dim ker(A) = N-1. So $\lambda = 0$ is an eigenvalue of multiplicity N-1. Moreover, every vector $u \in \langle b \rangle^{\perp}$ is an eigenvector for it. However, since $b^T a \neq 0$, $a \notin \langle b \rangle^{\perp}$. And, if x = a, then

$$Ax = ab^T a = (b^T a)a.$$

So a is an eigenvector with eigenvalue $\lambda = b^T a \neq 0$.

Problem 2 [10 points] Let $A \in \mathbb{R}^{N \times N}$. Recall that the operator norm of A is

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||},$$

where ||x|| is the usual Euclidean norm.

(a) Show that if $A^T = A$, then $||A|| = \max_{j=1,\dots,N} |\lambda_j(A)|$, where $\lambda_j(A)$ denotes the eigenvalues of A. Hint: Use the Spectral Theorem for symmetric matrices.

Since A is symmetric, the spectral theorem implies that A admits an orthonormal basis of eigenvectors $\{u_1, \ldots, u_N\}$ (here $Au_j = \lambda_j u_j$). Expand x in this basis as

$$x = \sum_{j=1}^{N} (u_j^T x) u_j.$$

Then,

$$\frac{\|Ax\|^2}{\|x\|^2} = \frac{\left\|\sum_{j=1}^N (u_j^T x) \lambda_j u_j\right\|}{\left\|\sum_{j=1}^N (u_j^T x) u_j\right\|} = \frac{\sum_{j=1}^N (u_j^T x)^2 \lambda_j^2}{\sum_{j=1}^N (u_j^T x)^2}$$

The right hand-side is a weighted average of the numbers $\{\lambda_j^2\}_{j=1}^N$. Hence, the maximum is attained by λ_{max}^2 . The conclusion follows by taking square roots.

(b) Show that the matrix
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, does not satisfy the conclusion in (a).

Since A is triangular, the eigenvalues are given by the diagonal elements. So $\lambda_{\max} = 1$ in this case. However, if $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, then $Ax = \begin{bmatrix} 2\\1 \end{bmatrix}$ and

$$\frac{|Ax||}{\|x\|} = \frac{\sqrt{5}}{\sqrt{2}} > 1.$$

Problem 3 [10 points] Assume $A, E \in \mathbb{R}^{n \times n}$ are symmetric. Set $\hat{A} := A + E$. Let $\alpha_1 \leq \cdots \leq \alpha_n$ and $\hat{\alpha}_1 \leq \cdots \leq \hat{\alpha}_n$ be the eigenvalues for A and \hat{A} respectively. Use the Courant-Fischer Theorem to show that, for $j = 1, \ldots, n$,

$$\hat{\alpha}_j \le \alpha_j + \|E\|,$$

where ||E|| is the operator norm of E. Hint:

Courant-Fischer Theorem: Let H be an $N \times N$ real symmetric matrix. Consider the eigenvalues ordered so that $\lambda_1(H) \leq \cdots \leq \lambda_N(H)$. Then:

$$\lambda_k(H) = \min_{S \in \mathcal{W}_k} \max_{u \in S \setminus \{0\}} \frac{u^T H u}{u^T u} = \max_{T \in \mathcal{W}_{N-k+1}} \min_{u \in T \setminus \{0\}} \frac{u^T H u}{u^T u}$$
(1)

where $\mathcal{W}_j := \{ U \subset \mathbb{R}^N : U \text{ is a linear subspace of } \mathbb{R}^N \text{ and } \dim U = j \}.$

By the Courant-Fischer Theorem,

$$\hat{\alpha}_j = \min_{S \in \mathcal{W}_j} \max_{u \in S \setminus \{0\}} \frac{u^T \hat{A} u}{u^T u} = \min_{S \in \mathcal{W}_j} \max_{u \in S \setminus \{0\}} \left(\frac{u^T A u}{u^T u} + \frac{u^T E u}{u^T u} \right).$$

Further,

$$\max_{u \in S \setminus \{0\}} \left(\frac{u^T A u}{u^T u} + \frac{u^T E u}{u^T u} \right) \le \max_{u \in S \setminus \{0\}} \frac{u^T A u}{u^T u} + \max_{u \in S \setminus \{0\}} \frac{u^T E u}{u^T u},$$

and

$$\max_{u \in S \setminus \{0\}} \frac{u^T E u}{u^T u} \le \max_{u \neq 0} \frac{u^T E u}{u^T u} = ||E||.$$

So

$$\hat{\alpha}_j \le \min_{S \in \mathcal{W}_j} \left(\max_{u \in S \setminus \{0\}} \frac{u^T A u}{u^T u} + \|E\| \right) = \min_{S \in \mathcal{W}_j} \max_{u \in S \setminus \{0\}} \frac{u^T A u}{u^T u} + \|E\| = \alpha_j + \|E\|.$$

Problem 4 [10 points] Consider the following function

$$f(x) = \begin{cases} 0, & x < 0, \\ 2, & 0 \le x < 2, \\ 3, & x \ge 2. \end{cases}$$

Find the distributional derivative of f.

It is obvious that f is a locally integrable function. Let F be the distribution generated by f. For $\phi \in \mathcal{D}$, we have

$$(F',\phi) = -(F,\phi') = -\int_{-\infty}^{\infty} f(x)\phi'(x)dx = -2\int_{0}^{2} \phi'(x)dx - 3\int_{2}^{\infty} \phi'(x)dx$$
$$= \phi(2) + 2\phi(0)$$
$$= (\delta_{2},\phi) + 2(\delta,\phi) = (\delta_{2} + 2\delta,\phi)$$

Therefore $F' = \delta_2 + 2\delta$.

Problem 5 [10 points] Let H be a Hilbert space and $T: H \to H$ be a bounded linear operator. Let R(T) be the range of T and $N(T^*)$ be the null space of T^* . Prove that $(R(T))^{\perp} = N(T^*)$ (i.e. the orthogonal complement of R(T).)

Let $u \in (R(T))^{\perp}$. Then $u \perp R(T)$ or (u, Tv) = 0 for all $v \in H$. This implies that $(T^*u, v) = 0$ for all $v \in H$, that means that $T^*u = 0$ or $u \in N(T^*)$.

Let $x \in N(T^*)$. Then $T^*x = 0$ or $(T^*x, v) = 0$ for all $v \in H$. This implies that (x, Tv) = 0 for all $v \in H$ or x belongs to $(R(T))^{\perp}$.

Problem 6 [10 points] Let H be a Hilbert space. A bounded linear operator $A: H \to H$ is called *normal* if it commutes with its adjoint: $AA^* = A^*A$. Show that if B, C are commuting self-adjoint operators on H, then B + iC is normal.

We have from the assumption that $B = B^*$, $C = C^*$ and BC = CB. Let $u, v \in H$. We compute

$$((B + iC)u, v) = (Bu + iCu, v) = (u, Bv) + (u, -iCv) = (u, (B - iC)v)$$

Thus $(B + iC)^* = B - iC$. This implies that

 $(B+iC)^*(B+iC) = (B-iC)(B+iC) = B^2 + iBC - iCB + C^2 = B^2 + C^2$

Similarly we also have $(B + iC)(B + iC)^* = B^2 + C^2$. Thus B + iC is normal