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Instructions:

Do not write your name or any other identifying information on any page
except this cover page.

Use the space below the statement of a problem as well as the back of the
page and the next page for the solution. If more space is needed, use the
blank pages at the end.

All pages must be submitted. If there is work you want ignored, cross it out
(or otherwise indicate its status) or tape a clean sheet over it to create more
space to be used, being careful not to cover the code at the top.

You have three hours to work on these problems. Attempt all problems. Four
complete solutions will earn a pass. Credit for completed parts of separate
problems may combine to result in a pass.

No references are to be used during the exam.
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1. (10 pts) Let A ∈ R
n and B ∈ R

n×m. Show that the nonzero eigenval-
ues of the matrices AB and BA are the same.
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2. (10 pts) Let V be a subspace of Rn and u1, u2, . . . , uk be an orthonor-
mal basis of V . Define the mapping P : Rn → V as

Px =
k∑

j=1

(x · uj)uj.

For every x ∈ R
n, prove that

‖Px− x‖2 = inf
y∈V

‖y − x‖2.
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3. (10 pts) Let A = [aij] be a matrix in R
n×n and consider ‖ · ‖1 to be

the operator norm induced by vector norm | · |1 in R
n. Prove that

‖A‖1 = max
1≤i≤n

(
n∑

j=1

|aij|
)
.
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4. (10 pts) Let n be a positive integer and

Vn = span{eijx,−n ≤ j ≤ n}.

Show that ∪∞
n=1Vn is dense in L2(0, 2π).
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5. (10 pts) Let f be a locally integrable function and D be the set of test
functions. Define

(T, φ) =

∫
R

f(x)φ(x)dx, for all φ ∈ D.

Prove that T is a distribution.
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6. (10 pts) Let H be a Hilbert space and L : H → H be a continuous
linear operator. Prove that if ‖L‖ < 1, then the operator I − L is
invertible. Find the inverse of I − L in this case.

13

3197C36A-302D-470F-A19C-3609FB8396F3

qe1appliedaug23

#11 Page 13 of 14



83B1F4F9-0494-4587-A817-D5FF750D937C

qe1appliedaug23

#11 Page 14 of 14


