Applied Math Qual Exam Spring 2023

Name:_____

You must show your work clearly and justify everything to receive credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Problem 1 [10 points] Let $\|\cdot\|$ be a vector norm on \mathbb{R}^m and assume that $A \in \mathbb{R}^{m \times n}$. Prove that if rank(A) = n then $\|x\|_A := \|Ax\|$ defines a vector norm on \mathbb{R}^n . **Problem 2** [10 points] Let V be a subspace of \mathbb{R}^n and u_1, u_2, \ldots, u_k be an orthonormal basis of V. Define the mapping $P : \mathbb{R}^n \to V$ as

$$Px = \sum_{j=1}^{k} (x \cdot u_j) u_j.$$

For every $x \in \mathbb{R}^n$, prove that

$$||Px - x||_2 = \inf_{y \in V} ||y - x||_2.$$

Problem 3 [10 points] Let $A \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix. Prove that there is a symmetric and positive definite matrix $B \in \mathbb{R}^{n \times n}$ such that $A = B^2$. **Problem 4** [10 points] Let H be a Hilbert space and $L: H \to H$ be a continuous linear operator. Show that L maps bounded sets to bounded sets in H.

Problem 5 [10 points] Let \mathcal{D} be the set of test functions (smooth functions with compact support). Prove that, for any distribution F, the functional T defined by

$$(T,\phi) = -(F,\phi'), \text{ for all } \phi \in \mathcal{D}$$

is a distribution.

Problem 6 [10 points] Let H be a Hilbert space and $L: H \to H$ be a continuous linear operator. Prove that if ||L|| < 1, then the equation

$$u - Lu = f$$

has a unique solution $u \in H$ for any given right hand side $f \in H$.