
You must show your work clearly and justify everything to receive credit.

 Name:	 _________________________________


Email:	_________________________________


Instructions You have three hours to do your work and fifteen minutes to upload the solutions.

Submitting your work:

• Each photo must have work from only one problem: if you have multiple problems on
one page, use blank pages to cover other work or crop your photos accordingly.

• If you have trouble uploading, please send photos of individual problems to ksu.edu.

0) Four full problems correctly done will earn a pass. Parts of several problems may
combine to count for a full problem.

1) Do not write your name on any of the pages.

2) This is a closed book exam: no books, no notes, no calculators etc. Only plain papers
and pens should be on your table.

3) You must have your camera on showing your hands and, if possible, at least part of
your faces during the exam.

4) After you receive the exam online by email, if you want you can print it or you can keep
it open on your laptop or cellphone. After that you are allowed to use your computer
or any electronic device during the exam only to read the exam and later to upload it
on Crowdmark. Also you can communicate to the examiner via private chat in Zoom.

5) In case you lose internet connection at some point, you can continue your exam, how-
ever the examiners might consider to have an oral reexamination with you where you
would need to explain steps in your work. You can be asked additional questions. In
case the loss of connection is long, you can the examiner.

6) The exam is supposed to take 3 hours not counting the time of printing or accessing
the problems and uploading your test. If you want you can have a bit of extra time,
but the exam must be uploaded to Crowdmark
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Problem 1 [10 points] A projector is a square matrix P that satisfies P 2 = P .
a) Prove that if P is a projector, then null(I − P ) = range(P ).
b) Prove that if P is a projector, then range(P ) ∩ null(P ) = {0}.
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Problem 2 [10 points] Let A ∈ R
n×n be a symmetric and positive definite matrix.

Prove that there is a symmetric and positive definite matrix B ∈ R
n×n such that

A = BBT .
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Problem 3 [10 points] Let A ∈ R
n×n and assume that ‖A||p < 1 for some p ≥ 1

(‖ · ‖p is the operator norm induced by the vector p-norm). Prove that the matrix
In − A is nonsingular and find its inverse.
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Problem 4 [10 points] Let (en)n∈N be an orthonormal set in Hilbert space H.
Prove that for any u ∈ H the series

∑∞
n=1 |(u, en)|2 is convergent and that

∞∑
n=1

|(u, en)|2 ≤ ‖u‖2.
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Problem 5 [10 points] Let f : R → C be a locally integrable function and D be
the set of test functions (smooth functions with compact support in R). Let n be
a positive integer, define T : D → C as

(T, φ) =

∫ ∞

−∞
einx

dnφ(x)

dxn
f(x)dx for all φ ∈ D.

Prove that the functional T is well-defined and that T is a distribution.
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Problem 6 [10 points] Let H be a Hilbert space and L : H → H be a continuous
linear operator with closed range. Prove that the equation Lu = f has a solution
if and only if f is orthogonal to the null space of the adjoint operator L∗.
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