Applied Mathematics Practice Qualifying Exam

Problem 1. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular.

- (a) Describe the general numerical solution technique for the linear system of equations Ax = b.
- (b) Explain both how to modify this technique if A is symmetric positive definite and why it is helpful to do so.

Problem 2. Let $A \in \mathbb{R}^{m \times n}$. Explain how to solve the problem

$$\min_{\operatorname{rank}(B) \le k} \|A - B\|_2$$

where $\|\cdot\|_2$ represents the operator 2-norm.

Problem 3. Let $A, B \in \mathbb{R}^{100 \times 100}$ be matrices of the forms

$$A = \begin{bmatrix} 1 & 0.1 & & & \\ 0.1 & 1 & 0.1 & & \\ & 0.1 & 1 & 0.1 & \\ & & \ddots & \ddots & \ddots & \\ & & 0.1 & 1 & 0.1 \\ & & & 0.1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0.1 & & & \\ & 1 & 0.1 & & \\ & & 1 & 0.1 & \\ & & & \ddots & \ddots & \\ & & & & 1 & 0.1 \\ & & & & & 1 \end{bmatrix}$$

respectively. The figures below display the spectra of two matrices $\tilde{A}, \tilde{B} \in \mathbb{R}^{100 \times 100}$, with the properties that

 $||A - \tilde{A}||_{\infty} \le 10^{-10}$ and $||B - \tilde{B}||_{\infty} \le 10^{-10}$.

Determine which figure corresponds to each matrix. Explain your reasoning.

Problem 4. Let L be a self-adjoint bounded linear operator on a Hilbert space. Show that if μ and η are distinct eigenvalues of L with eigenvectors u and v respectively, then u is orthogonal to v.

Problem 5. Consider the family of linear operators, parameterized by $\lambda \in \mathbb{R}$,

$$L_{\lambda} = I - \lambda K$$

on the Hilbert space $L^2([0,1])$, where

$$(Ku)(x) = \int_0^1 e^{x-y} u(y) \, dy.$$

- (a) Prove that the equation $L_{\lambda}u = f$ is uniquely solvable when $\lambda \neq 1$.
- (b) Determine necessary and sufficient conditions on f for solvability when $\lambda = 1$.

Problem 6. Find the Green's function for the differential operator

$$Lu = -u'', \qquad u(0) = u'(1) = 0.$$