
1. a) Define the subspace topology.

b) Let f : X → Y be a continuous map, let X × Y be the product
space (with the product topology) and let

Γ(f) = {(x, f(x)) | x ∈ X} ⊂ X × Y,

equipped with the subspace topology. Show that Γ(f) is homeo-
morphic to X.
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2. Let X be a topological space, and let ∼ be a relation on X.

a) State what it means for ∼ to be an equivalence relation.

b) Define X/ ∼ and the quotient topology on it.

c) True or false (with proof or counter-example): If X is compact,
X/ ∼ is compact.

d) True or false (with proof or counter-example): If X is normal,
X/ ∼ is normal.
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3. Recall that a map f : X → Y is open if f(U) is open whenever U ⊆ X
is open. Recall that a closed map is one for which f(A) is closed
whenever A ⊆ X is closed. Let

S2 := {v ∈ R
3 | |v| = 1}.

Give S2 the subspace topology of the metric topology on R
3. Let

g : S2 → S2 be continuous and open.

a) Prove that g is a closed map.

b) Prove that g is surjective.
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4. a) Define what it means for a map to be nullhomotopic.

b) Prove that if |π1(X)| < ∞, then every map f : X → T 2 is
nullhomotopic (where T 2 = S1 × S1 is the 2-torus).
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5. Let

SK := {(x, y, z) ∈ R
3 | x2 + y2 ≤ 1, |z| ≤ 1 }/ ∼ and

K := {(x, y, z) ∈ R
3 | x2 + y2 = 1, |z| ≤ 1 }/ ∼ where

(x, y,−1) ∼ (x,−y, 1). Let [(1, 0, 1)] be the base point for each space.
Let ι : K → SK be the inclusion.

a) Compute π1(K), π1(SK), and the induced map ι∗ : π1(K) →
π1(SK).

b) Construct a non-cyclic abelian group H and a surgective homo-
morphism f : π1(K) → H.

c) Prove that there is no continuous map r : SK → K so that
ι ◦ r = idK .
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6. Definition: Given a space X, the cone CX is the quotient space
obtained by collapsing one end of the cylinder X×I. That is X×I/ ∼
where (x, 1) ∼ (y, 1) for all x, y ∈ X. Furthermore, the suspension
SX is the quotient space obtained by collapsing both ends end of the
cylinder X× I separately - or equivalently by identifying two copies of
CX along X × {0}.

X X × I CX SX

Problem: Calculate the cohomology of SX in terms of the cohomol-
ogy of X (Hint: It is helpful to note that CX is contractible).
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