Topology QE I January 2016

January 23^{rd} , 2016

Last name

First name

KSU email

1. Consider the finite topological space $X = \{a, b, c, d\}$ with topology

$$\{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, X\}.$$

Which of the following topological properties does this space exhibit: compactness, connectedness, path connectedness, separability, contractibility, Hausdorffness, metrizability?

- **2.** a) Let (X, d) be a metric space. Show that if $A \subseteq X$ is a compact subset, then it is a closed subset.
 - b) Give two definitions of connectivity for topological spaces: one using subsets, and one using maps to the discrete space $\{0, 1\}$. Show that both definitions are equivalent.
 - c) Give an example of a compact and connected space that is not path-connected.

3. For each $n \ge 1$, let $S^n = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} | x_0^2 + \dots + x_n^2 = 1\}$ be the *n*-th dimensional sphere, and let $\mathbf{b}_{n,0} = (1, 0, \dots, 0) \in S^n$. Let

$$Y := (\prod_{i=1}^n S^i) / (\mathbf{b}_{j,0} \sim \mathbf{b}_{k,0}) = S^1 \vee S^2 \vee \ldots \vee S^n.$$

- a) Find the fundamental group $\pi_1(Y, *)$ where * is an arbitrary base point.
- b) Find the homology groups of Y.

4. Let $S^1 = \{z \in \mathbb{C} \mid || z || = 1\}$. Given $n, m \in \mathbb{Z}$, let $\varphi_n \colon S^1 \to S^1$ be the map defined by $z \mapsto z^n$, and let $\varphi_m \colon S^1 \to S^1$ be the map defined by $z \mapsto z^m$. Finally, let

$$X = S^1 \coprod \{D_1^2, D_2^2\} / \{z \sim \varphi_n(z), \ y \sim \varphi_m(y) \ | \ z \in S^1 = \partial D_1^2, \ y \in S^1 = \partial D_2^2\}.$$

Compute the homology groups of X.

5. Let $\mathbb{T} = S^1 \times S^1$, the 2-dimensional torus, seen as

$$\mathbb{T} = \{ (z_1, z_2) \in \mathbb{C} \times \mathbb{C} \mid ||z_i|| = 1 \, i = 1, 2 \}.$$

Let $X = \mathbb{T} \times \mathbb{T}/((z,0) \sim (0,z))$, with the obvious topology. Briefly justify that X is path-connected, and compute its fundamental group.

6. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $(\widetilde{X}, \mathcal{T}_{\widetilde{X}})$ and $(\widetilde{Y}, \mathcal{T}_{\widetilde{Y}})$ be covering spaces of X and Y respectively. Show that $\widetilde{X} \times \widetilde{Y}$ is a covering space of $X \times Y$ (with the corresponding product topologies, of course).