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Instructions:

Do not write your name or any other identifying information on any page
except this cover page.

Use the space below the statement of a problem as well as the next page for
the solution. If more space is needed, use the blank pages at the back.

All pages must be submitted. If there is work to be ignored, either cross it
out (or otherwise indicate its status) or tape a clean sheet over it to allow
the space to be used, being careful not to cover the code at the top.

You have three hours to work on these problems. Attempt all problems.
Four complete solutions will earn a passing mark. Credit for completed
parts of separate problems may combine to constitute a pass as well. You
may use results from one part of a problem (even if you did not solve it) in
your solution to a subsequent part.

No references are to be used during the exam.
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1. (10 pts) Consider the finite topological space X = {0, a, b, c} with
topology induced by the subbasis {{a, 0, b}, {a, 0, c}, {b, 0, c}}.
a) List all of the open sets in the topology on X.

b) Prove in detail that X is path connected.

c) Which of the following topological properties does X exhibit –
compactness, T0-ness, T1-ness, Hausdorffness, separability, con-
tractibility?
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2. (10 pts) The word “embedding” is used differently in point-set topol-
ogy and in differential topology. Give both definitions, and prove that
a smooth function between smooth manifolds which is an embedding in
the sense of differential topology, when regarded as a continuous func-
tion between the underlying topological manifolds is an embedding in
the sense of point-set topology.

69FBD3B5-FAD9-4468-8F52-3B88F1D1C49F

topology-qe-i-august-2017

#1      5 of 18



3CD4C430-7380-46E4-B05A-D6E192BE4662

topology-qe-i-august-2017

#1      6 of 18



3. (10 pts) The usual definition of the real projective plane, RP2, is the
quotient space of R3 \{�0} by the equivalence relation �x ≡ �y if and only
if there exists λ ∈ R \ {0} such that �x = λ�y.

It can also be described as a quotient of the disjoint union of an open
disk and an open Möbius strip by an equivalence relation that identifies
an open annulus along the boundary of the disk with the annulus
obtained from the Möbius strip by removing a circle which generates
the fundamental group of the Möbius strip. Use the second description
– you do not need to prove it is equivalent to the first – to find

a) The fundamental group π1(RP
2) using the Seifert-vanKampen

Theorem.

b) The deRham cohomology of RP2 by using an appropriate Meyer-
Vietoris sequence.
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4. (10 pts) Consider the differential 3-form

ω = w2 dx ∧ dy ∧ dz + xw dw ∧ dy ∧ dz + yw dw ∧ dx ∧ dz

defined on R
4.

a) Find
∫
S3 ω, where S

3 is the standard unit sphere {(w, x, y, z) |w2+
y2 + z2 + w2 = 1}.

b) Is there a differential 2-form η such that ω = dη? Justify your
answer.
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5. (10 pts)

a) Define what it means to be a covering space and what it means
for a map to be nullhomotopic.

b) Prove that if |π1(X)| < ∞, then every map f : X → T n is
nullhomotopic (where T n = S1 × · · · × S1 is the n-torus).
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6. (10 pts)

a) Show that if f : X → Y is continuous, where X is compact and
Y is Hausdorff, then f is a closed map (that is f caries closed sets
to closed sets).

b) Give an example of a continuous map f : X → Y , where either
X is noncompact, Y is not Hausdorff, or both, such that f fails
to be closed.
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