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 Name:	 _________________________________


Email:	_________________________________


Instructions You have three hours to do your work and fifteen minutes to upload the solutions.

Submitting your work:

• Each photo must have work from only one problem: if you have multiple problems on
one page, use blank pages to cover other work or crop your photos accordingly.

• If you have trouble uploading, please send photos of individual problems to ksu.edu.

0) Four full problems correctly done will earn a pass. Parts of several problems may
combine to count for a full problem.

1) Do not write your name on any of the pages.

2) This is a closed book exam: no books, no notes, no calculators etc. Only plain papers
and pens should be on your table.

3) You must have your camera on showing your hands and, if possible, at least part of
your faces during the exam.

4) After you receive the exam online by email, if you want you can print it or you can keep
it open on your laptop or cellphone. After that you are allowed to use your computer
or any electronic device during the exam only to read the exam and later to upload it
on Crowdmark. Also you can communicate to the examiner via private chat in Zoom.

5) In case you lose internet connection at some point, you can continue your exam, how-
ever the examiners might consider to have an oral reexamination with you where you
would need to explain steps in your work. You can be asked additional questions. In
case the loss of connection is long, you can the examiner.

6) The exam is supposed to take 3 hours not counting the time of printing or accessing
the problems and uploading your test. If you want you can have a bit of extra time,
but the exam must be uploaded to Crowdmark
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1. Let X be a finite topological space

(a) Prove that X is separable

(b) Prove that X is Hausdorff if and only if it is discrete.
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2. (a) Define what it means for a space to be path-connected and what it
means to be compact.

(b) Consider the space DFR, the closed unit disk {�x ∈ R
2| |�x| ≤ 1} with

the topology induced by the “French railway metric”

d(�x, �y) =

{ |�x− �y| if �x, �y and �0 are colinear,
|�x|+ |�y| otherwise.

Prove that DFR is path-connected, but is not compact.
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3. (a) Describe the universal covering space of RP 2 ∨ S1, including a de-
scription of the covering map.

(b) What is π1(RP
2 ∨ S1)? Justify your answer.
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4. Let F : R2 → R
2 be the map F (x, y) = (ex cos y, ex sin y).

(a) Compute the induced map of tangent bundles F∗ : TR2 → TR2 in
coordinates (x, y,X, Y ) on TR2 = R

4, where a point with coordinates
(x, y,X, Y ) is the vector X∂x + Y ∂y ∈ T(x,y)R

2.

(b) Is F∗ a local diffeomorphism? Justify your answer. (Note that the
question is about F∗ and not about F .)
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5. Let F = (f1, f2, . . . , fn) : M
m → R

n be a smooth map. Prove that x ∈ M
is a critical point of F if and only if (df1)x, . . . , (dfn)x ∈ Tx

∗M are linearly
dependent if and only if (df1 ∧ . . . ∧ dfn)x = 0.
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6. Let id, r, c : S2 → S2 be the identity id : (x, y, z) �→ (x, y, z), reflection
r : (x, y, z) �→ (x, y,−z), and constant c : (x, y, z) �→ (1, 0, 0) maps, respec-
tively. Compute the induced maps id∗, r∗, c∗ : H∗(S2) → H∗(S2) in de
Rham cohomology. Use your answer to prove that none of the maps is
smoothly homotopic to any other.
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