Name:

Recitation Instructor and Time:

## Studio College Algebra – Exam 3 November 12, 2013

Please show all your work for full credit. Every problem is worth 5 points.

1. Rewrite the formula y = 211x by taking the natural logarithm of both sides, and expand wherever possible using properties of logarithms (no decimal approximations).



2. Solve for S in the following equation:  $ln\left(\frac{S}{3500}\right) = 2$ 

(Leave answer in exact form, no decimal approximations please).

$$e^{2} = \frac{6}{3500}$$
.
 $3500e^{2} = 6$ 

Name: \_\_\_\_\_

3. If  $\log(a) = 4.2$  and  $\log(b) = 3.8$ , what is  $\log(\sqrt[3]{ab})$  ?

$$\log(3\sqrt{ab}) = \log(ab)^{1/3}$$

$$= \frac{1}{3} [\log(ab)]$$

$$= \frac{1}{3} [\log(ab) + \log(b)]$$

$$= \frac{1}{3} [4.2 + 3.8] = \frac{1}{3} [8] = \frac{8}{3} \text{ or } 2.66$$

4. Solve  $4 + 5^x = 9$ 

5. Solve  $9\ln(x+5) = 27$ .

$$e^{3}: x+5$$
 $e^{3}-6=x$ 
 $o_{2} \times = 15.086$ 

| Name: |  | <br> |
|-------|--|------|
|       |  |      |

6. What is the future value in 10 years of an initial investment of \$800 at an annual interest rate of 6%, compounded monthly?

7. A certain type of bacteria grows according to the function  $P(x) = 3500(2^x)$ , where x is the number of hours that have passed by. How many bacteria will there be after 3 hours?

$$P(3) = 3500(2^3)$$

$$= 3500(8)$$

$$= [28000 backena]$$

| Name: |      |  |
|-------|------|--|
|       | <br> |  |

8. The number of widgets (in thousands) demanded each year is given by the formula  $D(x) = 5 + 10 \log(x + 3)$ , where x represents the number of years after 1980, and x > 0. In what year were 25,000 widgets demanded?

$$25 = 5 + 10\log(x+3)$$

$$20 = 10\log(x+3)$$

$$2 = \log(x+3)$$

$$(0^{2} = x + 3)$$

$$100 = x + 3$$

$$97 = x$$

9. Find a possible  $3^{rd}$  degree polynomial with single roots at x = 4, x = -1, and x = 3. Do not multiply your answer out.

$$\left( \left( \times -4 \right) \left( \times +1 \right) \left( \times -3 \right) \right)$$

| Name: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | The state of the s |  |

10. Given that -5 is a solution, find all solutions, both real and complex, of the following equation:  $x^3 + 5x^2 + 3x + 15 = 0$ .



11. Is x-3 a factor of  $x^3-5x^2+10x-7$ ? How do you know?

Two remainder, after dunding  $X^3 - 5X^2 + 10x - 7$  by X - 3 is not 0, So, X - 3 is not a factor.

| Name: | Name: | : |  |
|-------|-------|---|--|
|-------|-------|---|--|

12. Given that x = -5 and x = 3 are roots of the following polynomial, find all other roots, real and complex, of the polynomial:  $f(x) = x^4 + 4x^3 - 7x^2 - 22x - 60$ 

-551. 4 -7 -22 -60 L-5 5 10. 60

3)

U3 6 12

X+2x+4=0. X=-2+ [4-4(D(4))



- 13. Given the graph on the right, decide whether the following statements are **True or False**. You may assume nothing interesting happens outside the window shown.
- a) This polynomial has a negative leading coefficient.

Talse

b) The polynomial has a positive constant term.

Frul.

c) The polynomial does not have any repeated roots.

Tone.

d) The polynomial has even degree.

Fore

e) As x tends to both positive and negative infinity, the polynomial tends towards negative infinity.

False

| Name: |  |
|-------|--|
|       |  |

14. What is the domain of the function  $f(x) = 4 + 3\ln(-7x + 9)$ ?



15. What is the horizontal asymptote of the function  $f(x) = e^x - 6$ ? Briefly explain how you arrived at your answer. Your explanation should use the methods of this class and not rely solely on a graphing calculator.

Deason:  $y = e^{x}$  has a hongontal asymptote al y = 0: The -6. un flx)= $e^{x}$ -6 shifts the graph of  $y = e^{x}$  down 6 units, so the hongontal asymptote also shifts down 6 units.

| Name:    |  |      |
|----------|--|------|
| TAMERICA |  | <br> |

16. Some students have a data set, for which they create standard, log-log, and semi-log plots. (The plots are given below). Would a power or exponential model would be an appropriate fit for the data set? How do you know?







