Name: Recitation Instructor: Recitation Day and Time:

Studio College Algebra – Exam 2 – March 2015

Directions: You will find 16 problems listed below. Each problem is worth 5 points. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed (in particular, calculators with a built in CAS and/or QWERTY keyboard are not allowed). You have one hour to complete this exam. SHOW ALL WORK!

1. Solve $t^2 - 4t - 9 = 0$.

2. Write $x^2 + 8x + 3$ in the form $a(x - h)^2 + k$.

$$(x+y)^2 - 13.$$
One could use the vertex formula also.

3. A parabola has vertex at (1,3) and passes through the point (-1,8). What is the equation of the parabola? Write your answer in the form $y=a(x-h)^2+k$.

$$8 = a(-1-1)^{2} + 3.$$

$$8 = 4a + 3$$

$$5 = 4a.$$

$$5 = 4a.$$

$$4 = 5(x-1)^{2} + 3$$

$$4 = 5(x-1)^{2} + 3$$

4. The height of a ball in the air off the ground in meters, t seconds after it is thrown, is given by the equation $s(t) = -4.9t^2 + 12t + 15$. When does the ball hit the ground?

$$0 = -4.9t^{2} + 12t + 15$$

$$t = -12 + \sqrt{12^{2} - 4(-4.9)(15)}$$

$$2(-4.9)$$

$$t = -911 \text{ or } t = 3.36.$$

$$\boxed{2.36 \text{ seconds}}$$

5. Given h(x) = 3x - 5 and $k(x) = x^2 - 3x$, find k(x) - h(x).

$$K(x) - h(x) = x^2 - 3x - (3x - 5)$$

$$= x^2 - 6x + 5$$
(no need to factor)

6. Given r(x) = 6x - 1 and $m(x) = x^3 + 2x$, find r(x)m(x).

$$Y(X)mX = (6x-1)(X^3+2X)$$

$$= 6x^4+12x^2-X^3-2X$$
(no need to write
in descending power order)

7. Consider the table of values given below for two functions, f(x) and g(x):

x	-2	-1	0	1	2
f(x)	-3	1	-2	0	-1
g(x)	1	-3	-2	4	5

(a) Using the table above, find f(1) + g(1).

(b) Using the table above, find f(f(z))

$$f(f(x)) = f(-1) = [1]$$

8. Solve the quadratic inequality $x^2 - 9 > 16$. (Hint: Use either a graphing or number line method discussed in lecture.)

(number line or case an alysis is fine also)

9. Given
$$f(x) = \frac{x-5}{x}$$
, find $f^{-1}(x)$.

$$y = \frac{x-5}{x}$$

10. Solve and check: $x = \sqrt{x+2}$

$$(x-s)(x+1)=0$$

$$f^{-1}(x) = \frac{-5}{x-1}$$

11. The profit function for selling x units of a certain product is given by $P(x) = -x^2 + 8x - 2$, where P(x) is measured in **thousands**. For what number of units will there be at least \$5000 in profit? Hint: instead of using the number 5000 as part of your calculations, what number should be used?

$$-x^{2}+8x-2>5$$

$$-x^{2}+8x-7>0$$

$$-1(x^{2}-8x+7)>0$$

$$-1(x-7)(x-1)>0$$

12x47 unis

12. A 3-dimensional cartoon portrays an expanding sphere that grows in volume according to the function $V(r)=\frac{4}{3}\pi r^3$, where r is the radius of the sphere, in millimeters. If the radius grows according to the function r(t)=2t, where t is measured in seconds, find and interpret V(r(2)).

r(a) = 4 success millimeters. $V(r(2)) = V(4) = \frac{256}{3} \pi$ cubic mm.

Trus is Volume of sphere @ t=2 seconds
the

13. Given the graph of f(x) below, graph f(x+1) - 2.

14. Insect resting metabolic rate (RMR) has been found to be scaled positively with body mass (M) according to the equation $RMR = 4.14 (M^{0.66})$, where M is measured in mm^3O_2 per hour. Find the RMR of an insect weighing 1.4 grams.

15. Consider the graph of f(x) given on the grid below. Sketch $f^{-1}(x)$ on the same grid.

16. Consider the following piecewise function. Write TRUE or FALSE beside each of the statements given below.

$$f(x) = \begin{cases} 6, & x \le -3 \\ x^4, & -3 < x \le 2 \\ x, & x > 2 \end{cases}$$

- (a) f(2) = 16. Free (b) f(2) = 2. False (c) f(-3) = 6. Free (d) f(-3) = -3. Felse (e) f(-3) = 81. Labe