

Studio College Algebra - Exam 1 - February 2, 2016

Directions: You will find 16 problems listed below. Each problem is worth 5 points. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed (in particular, calculators with a built in CAS and/or QWERTY keyboard are not allowed). You have one hour to complete this exam.

1. Consider $g(x) = 5x^2 - dx$, where d is some external parameter. Answer the following:

(a) Find
$$g(-2)$$
. $g(-2) = 5(4) - d(-2) = 20 + 2d$

(b) Find
$$g(-1)$$
. $g(-1) = 5(1) - d(-1) = 5+d$

(c) Find
$$g(0)$$
. $g(0) = 0$

(d) Find
$$g(1)$$
. $g(1) = 5(1) - d(1) = 5 - d$

(e) Find
$$g(2)$$
. $g(2) = 5(4) - d(2) = \frac{20 - 2d}{2}$

2. Solve for x in the equation 4(2x+1)=3x-9.

$$8x+4=3x-9$$
 $5x=-13$
 $x=-13$

3. Graph -2x + 3y = 6 on the grid below. Include all intercepts.

$$3y = 2x + 6.$$

 $y = \frac{3}{3}x + 2$

4. Solve |x-6|=2x+8 and check your answers.

$$x - 6 = 2x + 8$$

$$x - 6 = -2x - 8$$

$$-14 = x$$

or
$$3x = -2$$

 $x = -\frac{2}{3}$

Check:

Only
$$x = \frac{-2}{3}$$
works

Right:
$$2(-\frac{2}{3}) + 8$$

$$= -\frac{4}{3} + \frac{24}{3}$$

$$= -20$$

5. Solve |x-1| < 7.

$$-72 \times -127$$
 -72×-127
 $-62 \times AND \times < 8$
 -62×8

6. Solve |x+9| > 4.

$$x+974$$
 or $x+92-4$ $x>-5$ or $x<-13$

7. A truck depreciates in value according to a linear model. If the initial value of the truck is \$28,000, and the value twenty years later is \$0, what was the depreciated value of the truck after 12 years?

$$(0,28000)$$
 $(20,0)$

Slope =
$$-\frac{28000}{20} = -\frac{41}{1400/year}$$

8. Suppose a line passes through (1,2) and (-5,8). What is the equation of the line passing through these points?

$$y = mx + b$$

$$m = \frac{8-2}{-5-1} = \frac{6}{-6} = -1$$

$$y = -x + b$$

$$2 = -(1) + b$$

$$3 = b$$

$$y = -x + 3$$

9. What is the domain of the function $f(x) = \frac{4}{9x+3}$?

$$9x+3=0.$$

$$9x = -3$$

$$x = \frac{-3}{9} = \frac{-1}{3}$$

Domain:
$$\times 7 - \frac{1}{3}$$
.

10. The weekly profit function for a business is P(x) = 15x - 300, where x is the number of customers. How many more customers must the business add if it wants to increase profits by \$750 per week?

The marginal profit for this linear

function is \$15 per customer.

is the answer.

11. The temperature T in degrees Fahrenheit inside a concert hall m minutes after a power outage during a winter concert is given by T(m) = -0.4m + 80. What is the meaning of the slope in this function?

12. The equation 5F - 9C = 160 gives the relationship between Fahrenheit and Celsius temperature measurements, where F is the temperature in Fahrenheit and C is the temperature in Celsius. What Celsius measure corresponds to a Fahrenheit measure of 71 degrees? Round your answer to the nearest tenth.

$$5(71) - 9C = 160$$

 $5(71) - 160 = 9C$
 $195 = 9C$
 $C \approx 21.67^{\circ}$

13. Suppose the number of cell phone subscribers (in millions) between the years 1993 and 1997 is described by the model P(x)=12.33x+29, where x is the number of years since 1995. Find and interpret the meaning of P(3).

$$P(3) = 12.33(3) + 29$$

= 65.99.

14. Suppose the total cost function for a certain product is given by C(x) = 15x + 100 and the revenue function for the product is given by R(x) = 25x. Find a profit function for this situation.

Profit = Revenue - Cost

$$P(x) = R(x) - C(x)$$

= 25x - (15x+100)
= $10x - 100$

15. Find M if x = 5 is a solution for Mx + 2 = 7x - M.

$$M(5)+2=7(5)-M$$

$$5M+2=35-M$$

$$6M=33$$

$$M=\frac{33}{6}=\frac{11}{2}$$

16. In a controlled lab environment, some organisms exhibit constant growth over a specific time period. Suppose a certain organism starts out weighing 2 mg, and grows to 8 mg over a 24 hour time period. Find a linear model that describes the growth of the organism for $0 \le t \le 24$ hours. (Hint: In other words, find a function f(t) = mt + b, with m and b filled in. You will have to figure out what m and b are for this situation.)

$$(t, f(t))$$
: t: time
 $f(t)$: weight
 $(0,2)$ $f(t) = mt + b$; $m = \frac{6}{24} = \frac{1}{4}$.
 $(24,8)$ $f(t) = \frac{1}{4}t + b$.

$$f(t) = \frac{1}{4}t + 2$$

OST 524, flt): Weight in mg.