

Name:

Recitation Instructor:

Recitation Day and Time:

Studio College Algebra – Exam 2 – March 2017

Directions: You will find 16 problems listed below. SHOW ALL WORK!! Each problem is worth 5 points. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed (in particular, calculators with a built in CAS and/or QWERTY keyboard are not allowed). You have one hour to complete this exam.

1. Solve
$$x^2 + 4x - 12 = 0$$
.
 $(x + (a)(x - 2) = 0$
 $x = -(a + 2)$

2. Write
$$x^2 + 6x - 1$$
 in the form $a(x - h)^2 + k$.

$$h = \frac{-b}{2a}$$
 $h = \frac{-b}{2} = -3$

$$k = f(h) = f(-3) = (-3)^{2} + 6(-3) - 1$$

$$= 9 - 18 - 1$$

$$= -10$$

$$x^{2} + (x - 1) = (x - (-3))^{2} - 10$$

$$= (x + 3)^{2} - 10$$

3. A parabola has vertex at (3,4) and passes through the point (5,6). What is the equation of the parabola? Write your answer in the form $y = a(x - h)^2 + k$ (DO NOT MULTIPLY OUT).

$$y = \frac{1}{2}(x-3)^2 + 4$$

4. The height of a ball in the air off the ground in meters, t seconds after it is thrown, is given by the equation $s(t) = -4.9t^2 + 12t + 12$. When does the ball hit the ground? (Hint: When the ball hits the ground, what is the distance off the ground? Use this fact, along with the quadratic formula.)

Approximately @ 3.212 seconds

5. Given h(x) = 4x + 5 and $k(x) = 9x^2 - 2x$, find k(x) - h(x).

$$9x^{2}-2x-(4x+5)$$

 $9x^{2}-2x-4x-5$
 $9x^{2}-6x-5$

6. Given r(x) = 5x + 1 and $m(x) = 16x^3 - 2x$, find r(x)m(x).

$$(5x+1)(16x^3-2x)$$

 $80x^4-10x^2+16x^3-2x$

or
$$80x^4+16x^3-10x^2-2x$$
; either format
1s fine.

- 7. Consider the functions, f(x) = x + 1 and g(x) = 53:
 - (a) Using the functions above, find f(2) + g(2). f(2) = 2 + 1 = 3f(2) = 53
 - (b) Using the functions above, find g(g(g(6000))). = 53

8. Solve the quadratic inequality $x^2-2>7$. (Hint: Use either a graphing or number line method discussed in lecture.)

$$x^{2}-277$$
; $x^{2}-9>0$; $(x-3)(x+3)>0$

9. Given
$$f(x) = \frac{x-4}{x}$$
, find $f^{-1}(x)$.

10. Solve and check:
$$x = \sqrt{x+12}$$

$$|P^{\dagger} \times^{2} = X + |2|$$

$$|P^{\dagger} \times^{2} - X - |2| = 0$$

check

$$x = -3$$

 $-3 = \sqrt{-3 + 12}$
 $= \sqrt{9}$
 $\neq 3$

$$x = 4$$
 $4 = \sqrt{4 + 12}$
 $= \sqrt{16}$
 $= 4$

11. The profit function for selling x units of a certain product is given by $P(x) = -x^2 + 8x - 2$, where P(x) is measured in **thousands**. For what number of units will there be at least \$5000 in profit? Hint: instead of using the number 5000 as part of your calculations, what number should be used?

$$x^{2} - 8x + 7 \le 0$$

 $(x-7)(x-1)$
 $x=7,1$

12. A 3-dimensional cartoon portrays an expanding sphere that grows in volume according to the function $V(r)=\frac{4}{3}\pi r^3$, where r is the radius of the sphere, in millimeters. If the radius grows according to the function r(t)=2t, where t is measured in seconds, find and interpret V(r(1)).

$$V(r(t)) = \frac{4}{3}\pi(2t)^3$$
 $z_{p}ts$

$$V(r(1)) = \frac{4}{3}\pi(2)^3$$
 pt

$$= \frac{32\pi}{3} mm^3$$
 p^{t}

This means the volume of has grown to the sphere
$$\frac{32\pi}{3}$$
 mm³ after I sec.

13. Given the graph of f(x) below, graph f(x-1)-2.

14. Insect resting metabolic rate (RMR) has been found to be scaled positively with body mass (M) according to the equation $RMR=4.14(M^{0.66})$, where M is measured in mg and RMR is measured in mm^3O_2 per hour. Find the RMR of an insect weighing 2.7 grams.

$$2.7g \times \frac{1000 \text{ mg}}{19} = 2700 \text{ mg}$$

- 15. A student claims that all lines, excluding vertical lines, are one-to-one functions. Is the student correct? Use examples in your explanation.
 - no. The constant line y=3 for example is not one to one.

More generally, lines of the form

f(x)=mx+b where m=0 are honzontal, these are not

one-to-ond

16. Consider the following piecewise function. Write TRUE or FALSE beside each of the statements given below.

$$f(x) = \begin{cases} 14, & x \le -3 \\ x^2, & -3 < x \le 2 \\ -x, & x > 2 \end{cases}$$

- (a) f(2) = -2.
- (b) f(2) = 4.
- (c) f(-3) = 14. T
- (d) f(-3) = 3.
- (e) f(-3) = 9.