

Ē

TRADITIONAL MATH 100 – Exam 1 – September 15, 2015

Directions: You will find 13 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

# 1	# 2	#3	# 4	# 5	#6	#7	# 8	#9	# 10	# 11	# 12	# 13	TOTAL

1. (8 points) Find the union. Express answers in interval notation and on a number line: $(-3,2]\cup [1,\infty)$

2. (6 points) Consider the graph of $h(x) = x^2$. Describe how the graph of h(x+4) - 5 would look in terms of translations.

- 3. (8 points) Considser the two points (4, -9) and (-6, 7).
 - (a) Find the midpoint of these points.

$$\left(\frac{X_{1}+X_{2}}{2},\frac{Y_{1}+Y_{2}}{2}\right)$$
, $\left(\frac{4-6}{2},\frac{-9+7}{2}\right)$; $\left(\left(-1,-1\right)\right)$

(b) Find the distance between these points.

distance =
$$\sqrt{(x_2 - x_i)^2 + (y_2 - y_i)^2}$$

= $\sqrt{(-10)^2 + (16)^2} = \sqrt{100 + 256} = \sqrt{356} = 2.589$

4. (10 points) Evaluate and complete the following function table for $f(t) = t^2 + 3Mt$, where M is some unspecified parameter. Show all work.

ţ

t	-2	-1	0	1	2	
f(t)	4-6M	1-3M	0	1+3M	4+6M	

$$f(-2) = (-2)^{2} + 3M(-2) = 4 - 6M.$$

$$f(-1) = (-1)^{2} + 3M(-1) = 1 - 3M$$

$$f(0) = 0 + 3M(0) = 0$$

$$f(1) = 1^{2} + 3M(1) = 1 + 3M$$

$$f(2) = 2^{2} + 3M(2) = 4 + 6M$$

5. (6 points) Solve for x: 4(x-1) + 7 = 7(x-2) - 5

$$4x - 4 + 7 = 7x - 14 - 5$$

$$4x + 3 = 7x - 19$$

$$-3x = -22$$

$$x = -22$$

6. (8 points) is the function $f(x) = x^2 - x + 1$ even, odd, or neither? Use the definitions of even/odd to justify your answers.

$$f(-x) = (-x)^2 - (-x) + 1 = x^2 + x + 1$$

$$-f(x) = -1(x^2 - x + i) = -x^2 + x - 1$$

Since $f(x) \neq f(-x)$, f isn't even
Since $-f(x) \neq f(-x)$, f isn't odd.
Therefore, the answer is [NETTHER].

7. (8 points) Given
$$f(x) = 4x - 7$$
, find the difference quotient $\frac{f(x+h) - f(x)}{h}$.
 $f(x+h) = 4(x+h) - 7 = 4x + 4h - 7$.
 $\frac{f(x+h) - f(x)}{h} = \frac{4x + 4h - 7 - (4x - 7)}{h}$
 $= \frac{4x + 4h - 7 - 4x + 7}{h} = \frac{4h}{h} = \frac{4h}{h}$

- 8. (8 points) Suppose the cost function for a certain product is given by C(x) = 12x + 300 and the revenue function for the product is given by R(x) = 40x. Find a formula for the following functions:
 - (a) Profit Function, P(x)

$$P(x) = R(x) - C(x) = 40x - (12x + 300) = 28x - 300$$

(b) Average Cost Function, $\overline{C(x)}$

$$\overline{C(N)} = C(X) = \frac{12x + 300}{x} \left(\text{or } \overline{C(Y)} = \frac{12 + 300}{x} \right)$$

9. (10 points) In a controlled lab environment, some organisms exhibit constant growth over a specific time period. Suppose a certain organism starts out weighing 4 mg, and grows to 16 mg over a 24 hour time period. Find a linear model that describes the growth of the organism for $0 \le t \le 24$ hours.

$$\frac{t}{0} \frac{1}{4} \frac{1}{4} \frac{1}{24-0} = \frac{1}{24} \frac{1}{2} \frac{1}{2$$

10. (6 points) On the grid below, graph the relation $\{(x, y)|y > -1\}$.

11. (6 points) Find a formula for the linear function given below:

12. (8 points) Find an equation of the line passing through (-3,5) and perpendicular to
$$4x - 2y = 8$$
.
Given line in glope - intercept form:
 $-2y = -4x + 8$
 $y = 2x - 4$.
Slope of new line: $-\frac{1}{2}$.
New line: $y - 5 = -\frac{1}{2}(x + 3)$ or $y = -\frac{1}{2}x + \frac{9}{2}$

13. (8 points) Graph the following piecewise function on the grid given below.

$$f(x) = \begin{cases} 2, & x \le -4 \\ -x, & -4 < x \le 5 \\ -3, & x > 5 \end{cases}$$

(a) Over what x-intervals is the graph of g(x) increasing?

(b) Over what x-intervals is the graph of g(x) decreasing?