Name: Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 - Exam 2 - October 13, 2015

Directions: You will find 13 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL

1. (6 points) Find the solutions and check your answers: |4x - 9| = x + 5.

2. (6 points) Find the solutions to $3x^2 + x - 5 = 0$.

$$x = -b \pm \sqrt{b^2 \cdot 4ac}$$
; here $a = 3$, $b = 1$, $c = -5$
 $x = -1 \pm \sqrt{1-4(3)(-5)}$; $x = -1 \pm \sqrt{61}$
 $a = -1 \pm \sqrt{3}$

3. (8 points) Solve: |2x - 9| > 17.

$$2x - 9 > 17$$
 or $2x - 9 < -17$
 $2x > 26$ or $2x < -8$
 $x > 13$ or $x < -41$

$$P(x) = (x-5)(2x^{2}-6x-56)$$

$$= (x-5)(x^{2}-3x-28)^{2}$$

$$= 2(x-5)(x-7)(x+4)$$

$$x=7$$
,
 $x=-4$
are
other
zeros

5. (6 points) Simplify and write in standard a + bi form: (-8 - i) - (14 + 3i)

$$-8-i-14-3i=[-22-4i]$$

6. (10 points) The profit function for selling x units of a certain product is given by $P(x) = -x^2 + 1600x + 960,000$. What number of units generates maximum profit, and, what is the maximum profit? Show your work with algebra. If you choose to use a graph as part of your work, you must include a graph having the pertinent information that helps to answer this question.

P(x) is a parabola that opens downward since reading coefficient is negative.

so p(x) attains a max (a) the vertex

vertex (h,k) is given by $h = \frac{-1600}{2(-1)} = 800$ units

and K = P(800) = -640000+1600(800) +960000

- 7. (10 points) Consider the polynomial $p(x)=200x^4-12x^3+2x+200$. Circle TRUE or FALSE for each of the statements below.
 - (a) TRUE p(x) has even degree.
 - (b) TRUE) FALSE p(x) has a positive y-intercept.
 - (c) TRUE FALSE p(x) has negative leading coefficient.
 - (d) TRUE FALSE As $x \to \infty$, $p(x) \to \infty$.
 - (e) TRUE) FALSE As $x \to -\infty$, $p(x) \to \infty$.

8. (8 points) A parabola has vertex at (-3,9) and passes through the point (2,14). What is the equation of the parabola? Write your answer in the form $y=a(x-h)^2+k$. DO NOT MULTIPLY OUT.

$$y = \alpha(x-h)^2 + k$$
 $14 = \alpha(2-(-3))^2 + 9$
 $14 = \alpha(5)^2 + 9$

- 9. (6 points) Using the **REMAINDER THEOREM**, find p(-1) when $p(x) = 2x^4 x^2 + 4x 1$. Be sure to identify your final answer.
- Either long division or synthetic division is fine

10. (6 points) Simplify i^{1243} .

11. (8 points) Solve: |5x + 6| < 12.

$$-12 \le 5 \times +6 \le 12$$
 $-12 \le 5 \times +6 \le 46 \le 12$
 $-18 \le 5 \times 46 \le 46$
 $-18 \le 4 \times 46 \times 46$

12. (8 points) Solve the quadratic inequality $x^2 - 6x < 7$.

number line or graph or case analysis must be included to get full credit:

13. (8 points) Find all solutions to the polynomial equation $x^4 - 14x^2 + 24 = 0$. Leave answers in radical form.

$$(x^2 - 2)(x^2 - 12) = 0$$
 $(x - (2)(x + (2)(x - (12)(x + (2)) = 0)$