Name: Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 - Exam 3 - November 2016

Directions: You will find 13 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8	# 9	# 10	# 11	# 12	# 13	TOTAL

1. (a) (6 points) Find $f^{-1}(x)$ when f(x) = 5x + 1.

$$y = 5x + 1$$

 $y - 1 = 5x$
 $\frac{y - 1}{5} = x$

(b) (6 points) Find $g^{-1}(x)$ when $g(x) = \log_4(7x + 3)$.

$$Y = \log_{4}(7 \times 13)$$
 $4^{7} = 7 \times +3$
 $4^{7} - 3 = 7 \times$
 $4^{7} - 3 = 7 \times$

$$f^{-1}(x) = 4 - 3$$

2. (A points) Given $g(x) = x^2 + 2x - 1$ and h(x) = 3x + 4, find g(h(x)) and write your answer in the form $ax^2 + bx + c$.

$$g(3x+4) = (3x+4)^{2} + 2(3x+4) - 1$$

$$= 9x^{2} + 24x + 16 + 6x + 8 - 1$$

$$= 9x^{2} + 30x + 23$$

3. (6 points) Using the values $\log(a) = 1.6$ and $\log(b) = 2.4$, find $\log\left(\sqrt{a^3b}\right)$.

$$\log(a^{3}b)^{1/2} = \frac{1}{2} [\log(a^{3}b)]$$

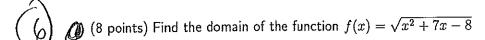
$$= \frac{1}{2} [3\log a + \log b]$$

$$= \frac{1}{2} [3(1.6) + 2.4]$$

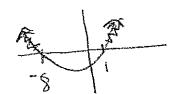
$$= 2.4 + 1.2$$

$$= 3.6$$

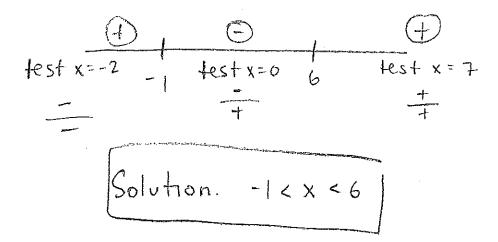
4. (6 points) Solve: $2 + \ln(x-1) = 9$. Leave answers exact (in other words, don't use a calculator).


$$e^{\frac{1}{2}} = x - 1$$

$$e^{\frac{1}{4}} + 1 = x$$


(8 points) Condense into a single logarithmic expression using the properties of logarithms (you may assume that
$$x$$
 is positive): $\log_4(x) + \log_{16}(x+5)$. (Hint: Change of base formula).

one could use base 16 or another base ...


=
$$1094(x) + 1094(x+5)^{12} = [1094(x.(x+5)^{12})]$$

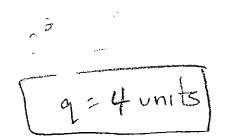
$$x^{2}+7x-8 \ge 0$$

 $(x+8)(x-1) \ge 0$

7. (8 points) Solve the rational inequality: $\frac{x-6}{x+1} < 0$. Be sure to include either a case analysis, or, a number line justifying how you arrived at the answer.

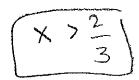
8. (4 points each, no partial credit) Fill in the blank:

(a)
$$\log_b\left(\sqrt{b}\right) = \frac{1}{2}$$


(b)
$$\log_5\left(\frac{1}{125}\right) = -3$$

(c)
$$\ln(e^3) = \frac{3}{}$$

40 (32)


9. (6 points) The supply function for a certain product is given by $p = 300 - (2^q)$, where p is the price of the product and q is the quantity supplied at that price. If the price of the product is \$2400, how many units will be supplied?

3240 = 40 (3°) -81=3°

10. (6 points) Find the domain of the function $f(x) = \log(3x - 2)$.

3x-2>0

(6 points)

Suppose R(t) = 3t + 2 is a function that gives the radius of a circular oil spill at t minutes. Suppose A(t) is the formula for area of a circle with radius r. Find an expression for A(R(t)).

A(r)= TT

$$A(r) = \pi r^{2}$$

$$A(R(t)) = \pi (3t+2)^{2}$$

$$= \pi \left[9t^{2} + 12t + 4 \right]$$

12. (6 points) Solve: $4 + 9e^x = 10$. Leave answers exact (in other words, don't use a calculator).

$$\left[2n\left(\frac{2}{3}\right)=X\right]$$

leave answer in terms of pi.

13. (8 points) Solve the following rational equation:
$$\frac{x+3}{x+57} = \frac{x+6}{5x-1}$$

$$\frac{(x+3)(5x-1)-(x+6)(x+67)}{(x+67)(5x-1)} = 0$$

$$\frac{5x^2-x+15x-3-(x^2+63x+342)}{(x+67)(5x-1)} = 0$$

$$\frac{4x^2-49x-345}{(x+57)(5x-1)} = 0$$

$$\frac{(4x-69)(x+5)}{(x+57)(5x-1)} = 0$$

$$\frac{(x+57)(5x-1)}{(x+57)(5x-1)} = 0$$

$$\frac{(x+67)(x+57)(5x-1)}{(x+57)(5x-1)} = 0$$

$$\frac{(x+67)(x+67)}{(x+67)(x+67)} = 0$$

$$\frac{(x+67)(x+67)}{(x+67)(x+67)} = 0$$