Name: Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 – Exam 3 – Summer 2016

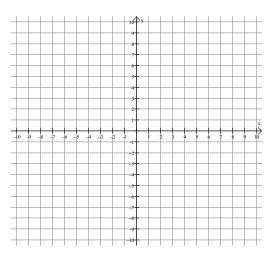
Directions: You will find 15 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

					TOTAL
20 pts.	20 pts.	20 pts.	20 pts.	20 pts	100 pts
]

1. (7 points) Find $f^{-1}(x)$ when f(x) = 7x + 2.

2. (7 points) Given $g(x) = 6x^2 - 4x$ and h(x) = x + 2, find g(h(x)).

3. (6 points) Expand completely using properties of logarithms (you may assume all variables to be positive): $\log (w^2 z x \sqrt{y})$


4. (8 points) Solve the following rational equation: $\frac{x+7}{x+13} = \frac{x-3}{5x-1}$

5. (6 points) Solve and check: $2x - 4 = \sqrt{10x + 30}$

6. (6 points) Simplify i^{245} .

7. (6 points) Condense into a single logarithmic expression using the properties of logarithms (you may assume that x is positive): $log(x) + \frac{1}{7}$

8. (5 points) Solve the inequality by graphing: $\sqrt{x-3} \ge 1$

9. (9 points) Fill in the blank:

(a)
$$\log_2\left(\frac{1}{16}\right) =$$

- (b) $\log_9(81) =$ _____
- (c) $\log_a(a^3) =$ _____

10. (8 points) Given that x = -1 is one zero of $p(x) = x^3 + 1$, find all the other zeros, real or complex, of p(x).

11. (6 points) Find the domain of the function $g(x) = \sqrt{x^2 - 6x}$.

12. (6 points) Solve the rational inequality $\frac{x+1}{x-5} \ge 0$, remembering to check endpoints.

13. (6 points) Simplify and write in standard a + bi form: (2 - 5i)(3 + 8i)

14. (6 points) Find the domain of the function $f(x) = \log(3x + 7)$.

- 15. (8 points) Consider the rational function $r(x) = \frac{x^2 6x}{x^2 10x + 9}$. Answer the following questions. (a) What is the domain of r(x)?
 - (b) What are the zeros of r(x)?
 - (c) What are the poles (vertical asymptotes) of r(x)?
 - (d) Does r(x) have a horizontal asymptote? If so, what is it?