Name:

Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 – Exam 2 – October 2017

Directions: You will find 16 problems listed below. SHOW ALL WORK! No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

1. (6 points) Find the solutions and check your answers: |2x + 3| = 16.

$$2x+3=16$$
 or $2x+3=-16$.

 $2x=13$ or $2x=-19$
 $x=\frac{13}{2}$ or $x=\frac{-19}{2}$

Check: $|2|-|3|=|-16|=16$

Check: $|2|-|3|=|-16|=16$

Both answers

2. (6 points) Find the solutions to $x^2 + 8x - 5 = 0$.

3. (6 points) Solve the quadratic inequality $x^2 + 2x < 3$.

$$(x+3)(x-1) < 0$$

* Must have either # line or graphical Justification (or a case analysis)

4. (6 points) Given that x=-4 is one zero of $p(x)=x^3+64$, find all the other zeros, real or complex, of p(x).

$$x^{2}-4x+16=0$$

 $x=4\pm\sqrt{16-4(0)(16)}=4\pm\sqrt{-48}-4\pm4\sqrt{3}$: $=(2\pm2\sqrt{3})$

5. (6 points) Suppose a rational function has poles (vertical asymptotes) at x=5 and x=3, zeros at x=1 and x=-1, and a horizontal asymptote y=2. Find a possible rational function that has such attributes.

$$f(x) = \frac{2(x+1)(x-1)}{(x-5)(x-3)}$$

6. (6 points) Find the quotient and remainder when $p(x) = x^3 - 5x^2 + 5x + 3$ is divided by $x^2 + 2x + 4$. Write p(x) in the form d(x)q(x) + r(x), where d(x), q(x) and r(x) are the divisor, quotient and remainder, respectively.

$$x^{2}+2x+4$$
 $= (x^{3}-5x^{2}+5x+3)$
 $= (x^{3}+2x^{3}+4x^{4})$
 $= 7x^{2}+x+3$
 $= (-7x^{3}-14x-28)$
 $= 15x+31$

$$p(x) = (x^{2}+2x+4)(x-4) + (15x+31)$$

 $d(x) q(x) \qquad r(x)$

- 7. (6 points) The profit function for selling x units of a certain product is given by $P(x) = -x^2 + 60x + 480$. What number of units generates maximum profit, and, what is the maximum profit? Show your work with algebra. Remember to answer both parts of the question. (h,k); vertex

$$h = -\frac{b}{2a} = \frac{-60}{2(-1)} = 30$$

$$k = P(30) = -900 + 1800 + 480$$

$$= 900 + 480$$

$$= 1380$$

(since a eo, parabola atlains a max.

8. (6 points) Simplify and write in standard a+bi form: (-2+3i)(-4+5i)

- - 9. (8 points) Consider the polynomial p(x) = (2x-5)(1-x)(2-x)(x+4). Circle TRUE or FALSE for each of the statements below. (2x-5)(-x+1)(-x+2)(x+4)

FALSE

p(x) has even degree.

FALSE

p(x) has a negative y-intercept. P(6) = (-5)(1)(2)(4)

FALSE

p(x) has positive leading coefficient.

FALSE

As
$$x \to \infty$$
, $p(x) \to \infty$.

10. (8 points) A parabola has vertex at (1,-1) and passes through the point (2,6). What is the equation of the parabola? Write your answer in the form $y=ax^2+bx+c$.

$$y = a(x-h)^{2} + K$$

 $6 = a(2-1)^{2} - 1$
 $6 = a = a$

$$y=7(x-1)^{2}-1$$

= $7(x^{2}-2x+1)=1$
= $7x^{2}-14x+6$
answer

11. (4 points) Using the **REMAINDER THEOREM**, find p(2) when $p(x) = x^4 - 4x^2 + 3x - 2$. Be sure to identify your final answer.

12. (6 points) Simplify i^{82459} .

13. (6 points) Solve:
$$|2x - 5| < 13$$
.

Jacob

14. (6 points) Solve: |2x + 5| > 9.

$$2x+5 > 1$$
 or $2x+5 < -9$
 $2x > 4$ or $2x < -14$
 $x > 2$ or $x < -7$

- - 15. (8 points) Consider the parabola $f(x) = -(x+3)^2 + 4$. Answer the following questions. (Drawing a quick sketch of the graph of f(x) may help you.)
 - (a) What is the domain of f(x)?

(b) What is the vertex of f(x)?

(c) What is the range of f(x)?

(d) What is the axis of symmetry of f(x)?

$$x = -3$$

16. (6 points)Find ALL the zeros of $p(x) = x^4 - x^2 \otimes 72$.

$$(x^2-1)(x^2+8)=0$$

 $(x-3)(x+3)(x^2+8)=0$