Name:

Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 - Exam 3 - April 2017

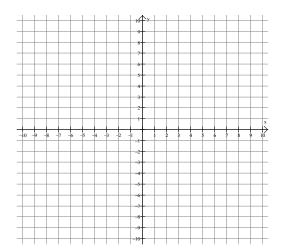
Directions: You will find 15 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

		TOTAL 100 pts

1. (7 points) Find $f^{-1}(x)$ when f(x) = 2x + 9.

2. (7 points) Given $g(x) = x^2 - 7x$ and h(x) = 2x + 5, find g(h(x)).

3. (6 points) Expand completely using properties of logarithms (you may assume all variables to be positive): $\log\left(\frac{100x\sqrt{y}}{5}\right)$


4. (8 points) Solve the following rational equation: $\frac{2x+14}{2x+11} = \frac{x+1}{x+4}$

5. (6 points) Solve and check: $3x-2=\sqrt{18x-5}$

6. (6 points) Simplify i^{419} .

7. (6 points) Condense into a single logarithmic expression using the properties of logarithms (you may assume that x is positive): $\ln(x) - \frac{1}{8}$

8. (5 points) Graph the function $f(x) = \sqrt{x+4}$ on the graph below, include at least 4 points on this graph. Then, using your graph, solve the inquality $f(x) = \sqrt{x+4} < 3$.

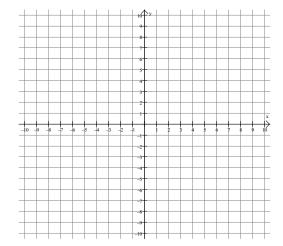
9. (9 points) Fill in the blank:

(a)
$$\log_5\left(\frac{1}{125}\right) =$$

(b)
$$\log_3(243) =$$

(c)
$$\log_B(\sqrt{B}) =$$

10. (8 points) Given that x=-6 is one zero of $p(x)=x^3+8x^2+17x+30$, find all the other zeros, real or complex, of p(x).


11. (6 points) Find a 3rd degree polynomial with zeros at x=2, x=-1 and x=3, that also passes through the point (1,-1).

12. (6 points) Solve the rational inequality $\frac{2x+5}{x-7} \geq 0$, remembering to check endpoints.

13. (6 points) Simplify and write in standard a+bi form: (5+3i)(2-7i)

14. (6 points) Find the domain of the function $f(x) = \log(-2x + 14)$.

15. (8 points) Graph the rational function $r(x)=\frac{x^2-4}{x+2}$. Hint: You had homework problems similar to this question.

