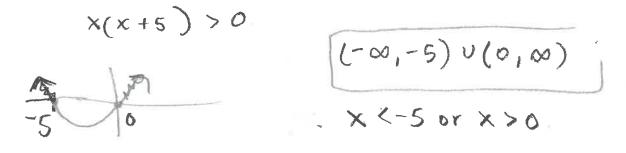
Name: Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 - Exam 2 - February 27, 2018

Directions: You will find 15 problems listed below. No notes/books are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.


Page 2 20 pts.		

1. (6 points) Find the solutions and check your answers: 1+2|x+4|=17.

2. (6 points) Find the solutions to
$$3x^2 - x - 7 = 0$$
.

$$X = -(-1) \pm \sqrt{1-4(3)(-7)}$$
 $X = 1 \pm \sqrt{85}$

3. (8 points) Solve the quadratic inequality $x^2 + 5x > 0$.

4. (8 points) In a controlled lab environment, some organisms exhibit constant growth over a specific time period. Suppose a certain organism starts out weighing 1 mg, and grows to 13 mg over a 48 hour time period. Find a linear model (in other words, find a linear function) that describes the growth of the organism for $0 \le t \le 48$ hours.

5. (6 points) Find an equation of the line passing through (-4,5) and perpendicular to x+3y=2.

Slope of given line:
$$3y = -x + 2$$

 $y = -\frac{1}{3}x + \frac{2}{3}$
 $m = -\frac{1}{3}$

New line slope: M = 3

6. (6 points) Find the quotient and remainder when $p(x)=3x^3-x^2+1$ is divided by x^2+4x-1 . Write p(x) in the form d(x)q(x)+r(x), where d(x),q(x) and r(x) are the divisor, quotient and remainder, respectively.

$$\begin{array}{r}
3x - 13 \\
x^{2} + 4x - 1 \\
- (3x^{3} - x^{2} + 0x + 1) \\
- (3x^{3} + 12x^{2} - 3x)
\end{array}$$

$$\begin{array}{r}
-13x^{2} + 3x + 1 \\
- (-13x^{2} - 42x + 13)
\end{array}$$

$$\begin{array}{r}
45x - 12
\end{array}$$

$$p(x) = (x^2 + 4x - 1)(3x - 13) + (45x - 12)$$

 $d(x) \cdot q(x) + r(x)$

7. (5 points) Suppose the number of vehicle thefts in a given area, from the years 1960 to 1990, could be modeled by the polynomial $p(x) = 30.97x^3 - 1266.9x^2 + 19199x + 29,130$, where x is the number of years since 1960. What is p(13), and what is its meaning in context of the model? Explain in a brief sentence.

$$p(13) = 30.97 (13)^3 = 1266.9 (13)^2 + 19199 (13) + 29,130$$

 $p(13) \approx 132652$

In 1973, there were about 132,652 vehicle thefts in the area

8. (5 points) Find the vertex of the quadratic function $C(x) = -x^2 - 140x + 600$. Is the vertex a maximum or minimum, and how do you know?

$$(h, k) = \frac{(140)}{2(-1)} \cdot c(h)$$
 Vertex: $(-70, 5500)$
 $= (-70, c(-70))$ Maximum
 $= (-70, c(-70))$ Since $a < 0$
 $= (-70)^2 - (-70)^2 - (-70) + 600$ Opens
 $= 5500$ down)

9. (10 points) Consider the polynomial $p(x)=4x^6-10x^2+x-400$. Circle TRUE or FALSE for each of the statements below.

(a) TRUE FALSE
$$p(x)$$
 has odd degree. Leg wee = 6, even

(b) TRUE FALSE
$$p(x)$$
 has a negative y-intercept. (c) TRUE FALSE $p(x)$ has positive leading coefficient.

(d) TRUE FALSE As
$$x \to \infty$$
, $p(x) \to \infty$.

TRUE FALSE As
$$x \to -\infty$$
, $p(x) \to \infty$.

True Formula for the ends

10. (8 points) A parabola has vertex at (1,-2) and passes through the point (3,4). What is the equation of the parabola? Write your answer in the form $y=ax^2+bx+c$.

$$4 = a(3-1)^{2}-2$$

$$4 = 4a-2$$

$$6 = 4a$$

$$\frac{3}{2} = a$$

$$y = \frac{3}{2}(x-1)^{2}-2$$

$$9 = \frac{3}{2}(x^{2}-2x+1)-2$$

$$y = \frac{3}{2}(x^{2}-2x+1)-2$$

$$y = \frac{3}{2}(x^{2}-2x+1)-2$$

$$y = \frac{3}{2}(x^{2}-3x+3)-2$$

11. (6 points) Using the **REMAINDER THEOREM**, find p(4) when $p(x) = 2x^4 + x + 4$. Be sure to identify your final answer.

12. (6 points) Consider two quadratic functions given by $f(x) = 2x^2 - 11x + 12$ and $g(x) = x^2 - 3x + 5$. Find the intersection points of these two parabolas and state your answers as ordered pairs.

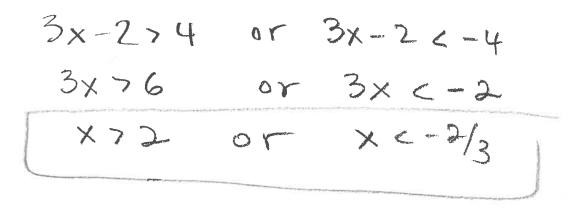
$$2x^{2}-11x+12 = x^{2}-3x+5$$

$$x^{2}-8x+7=0$$

$$(x-7)(x-1)=0$$

$$x=7,1$$

$$g(7)=f(7)=33$$

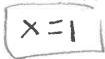

$$(7,33) \text{ and } (1,3)$$

$$g(1)=f(1)=3.$$

13. (6 points) Solve: |x-7| < 8.

$$-84x-748$$
 $-84x-748$
 $-84x-748$
 $-16x$ and $x-748$
 $-16x$ and $x<15$

 $14. \ \hbox{(6 points) Solve:} \ |3x-2|>4.$



- 15. (8 points) Consider the parabola $f(x)=(x-1)^2-4$. Answer the following questions. (Drawing a quick sketch of the graph of f(x) may help you.)
 - (a) What is the domain of f(x)?

(b) What is the vertex of f(x)?

(c) What is the range of f(x)?

(d) What is the axis of symmetry of f(x)?

