Name:

Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 - Exam 3 - November 2019

Directions: You will find 13 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8	# 9	# 10	# 11	# 12	# 13	TOTAL

1. (6 points) Find the domain of the function $f(x) = \log(4x + 3)$.

2. (6 points) Solve: $5 + 4e^{(x+1)} = 13$. Leave answers exact (in other words, don't use a calculator).

3. (6 points) Using the values $\log(a) = 10$ and $\log(b) = 2$, find $\log(b^2\sqrt{a})$.

4. (6 points) Solve: $3\log_4(5x-2)-1=8$. Leave answers exact (in other words, don't use a calculator).

5. (8 points)

(a) Rewrite using the base b via the change of base formula:

$$\log_R(M) =$$

(b) Condense into a single logarithmic expression using the properties of logarithms (you may assume that z is positive): $\log_4(z) + \log_{16}(z+1)$.

6. (8 points) Find the domain of the function $f(x) = \sqrt{x^2 - 3x - 4}$

7. (8 points) Solve and check your answer for the following rational equation: $\frac{5}{3x+2} = \frac{2}{x-1}$

8. (8 points) Solve the rational inequality: $\frac{2x-6}{x+1} > 0$. Be sure to justify your anwer using appropriate methods.

10. (a) (6 points) Find
$$f^{-1}(x)$$
 when $f(x) = -3x + 5$.

(b) (6 points) Find
$$g^{-1}(x)$$
 when $g(x) = \log_5(x-3)$.

11. (6 points) Suppose R(t)=2t is a function that gives the radius of a circular oil spill at t minutes. Given $A(r)=\pi r^2$, find an expression for A(R(t)), and leave your final answer in terms of π .

12. (8 points) Given $f(x) = 2x^2 + x - 4$ and g(x) = 3x + 2, find f(g(x)) and write your answer in the form $ax^2 + bx + c$.

13. (12 points) Graph $f(x)=2^x$ and $g(x)=\log_2(x)$ on the same grid. Include at least 4 points on each graph and include relevant asymptotes.

