Name:

Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 - Exam 3 - April 2019

Directions: You will find 15 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

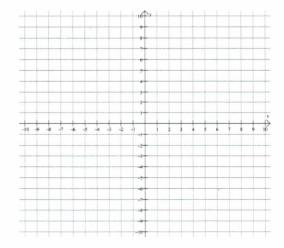
Page 1 20 pts.	Page 2 20 pts.		

1. (7 points) Find $f^{-1}(x)$ when f(x) = 2x + 5.

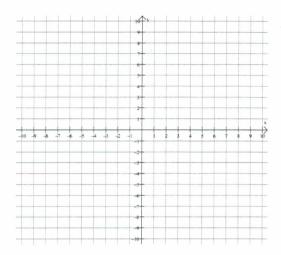
2. (7 points) Given $g(x) = x^2 - 9x$ and h(x) = 4x + 3, find g(h(x)).

3. (6 points) Expand completely using properties of logarithms (you may assume all variables to be positive): $\log (100x^3\sqrt{y})$

4. (8 points) Solve the following rational equation: $\frac{2}{x-1} = \frac{3}{x}$


5. (6 points) Solve and check: $x-2=\sqrt{3x+4}$

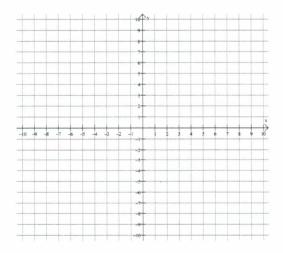
6. (6 points) Simplify i^{503} .


7. (6 points) Condense into a single logarithmic expression using the properties of logarithms (you may assume that x is positive): $\log(x) + \frac{1}{4}$

8. (8 points) Given that x=1 is a zero of $p(x)=x^3-7x+6$, find all the other zeros, real or complex, of p(x).

9. (6 points) Graph the function $f(x) = \sqrt{x-2}$ on the graph below, include at least 4 points on this graph. Then, using your graph, solve the inquality $f(x) = \sqrt{x-2} < 1$.

10. (8 points) Graph the exponential function $f(x) = 3^x$. Then, graph the function $g(x) = \log_3(x)$ on the same grid. Include at least 5 points on each graph, and, include relevant asymptotes.


11. (6 points) Find a 3rd degree polynomial with zeros at x = -1, x = 1 and x = 2, that also passes through the point (4,9).

12. (6 points) Solve the rational inequality $\frac{x+3}{x} \geq 0$, remembering to check endpoints.

13. (6 points) Simplify and write in standard a+bi form: (9-4i)(2+3i)

14. (6 points) Find the domain of the function $f(x) = 17 + \log(7 - 4x)$.

15. (8 points) Graph the rational function $r(x) = \frac{x^2 - 4}{x + 2}$.

