Name:
Docito

Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 – FINAL EXAM – Fall 2021 Every problem is worth 8 points.

1. Find the distance between the two points (3,6) and (2,-5).

- 2. Consider $m(x) = x^2 + x 9$. Answer the following:
 - (a) Find m(2).
 - (b) Find m(-3).
 - (c) Find m(a) where a is some generic input value.
 - (d) Find m(x+1), and expand completely.

3. Solve for x in the equation 4(6x - 1) - 7 = 2(x - 5) + 3.

4. Graph $y=-x^2+4$ on the grid below. Include at least 6 points on your graph, including the intercepts. Please include a table of ordered pairs as part of your work.

- 5. Suppose the total cost function for a certain product is given by C(x) = 60x + 1100 and the revenue function for the product is given by R(x) = 98x. Find a formula for the following functions:
 - (a) Profit Function, P(x)
 - (b) Average Cost Function, $\overline{C(x)}$

- 6. Consider the polynomial $p(x)=13x^4-16x^2+x-400$. Circle TRUE or FALSE for each of the statements below.
 - (a) TRUE FALSE p(x) has odd degree.
 - $\mbox{(b) TRUE} \qquad \mbox{FALSE} \qquad p(x) \mbox{ has a negative y-intercept}.$
 - $\mbox{(c) TRUE} \qquad \mbox{FALSE} \qquad p(x) \mbox{ has positive leading coefficient}.$
 - (d) TRUE FALSE As $x \to \infty$, $p(x) \to \infty$.

7. Consider two quadratic functions given by $f(x) = x^2 - x - 5$ and $g(x) = -2x^2 + 2x + 13$. Find the intersection points of these two parabolas and state your answers as ordered pairs.

8. Suppose the number of vehicle thefts in a given area, from the years 1960 to 1990, could be modeled by the polynomial $p(x) = 30.97x^3 - 1266.9x^2 + 19199x + 29,130$, where x is the number of years since 1960. What is p(7), and what is its meaning in context of the model? Explain in a brief sentence.

9. Find the vertex of the quadratic function $C(x) = x^2 - 8x + 12$. Is the vertex a maximum or minimum, and how do you know?

10. Graph: f(x) = |x - 1| - 2. Include all intercepts and at least 6 points on your graph.

11.	Given	q(x)	$=x^2$	+4x	and	h(x)	=	2x + 5	find	q(h	(x)).

12. Expand completely using properties of logarithms (you may assume all variables to be positive): $\log\left(1000x^4\sqrt{y}\right)$

13. In lecture we learned about a formula to find the inverse of a 2×2 matrix. Given A below, write down the formula for A^{-1} .

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

 $14. \ \mbox{Find}$ the inverse of the following matrix:

$$\left(\begin{array}{cc} 2 & 4 \\ 1 & -5 \end{array}\right)$$

15. Solve and check: $x-2=\sqrt{3x+4}$

16. Simplify $i^{525}.$

17.	Given that $x = 1$ is a zero of $p(x) = x^3 - 7x + 6$, find all the other zeros, real or complex, of $p(x)$.	
18.	Suppose \$3400 is invested in an account paying 3% annual interest, compounded continuously. How much time is required for the initial investment to triple?	

 σ

19. Find the product CD for the matrices given below. Assume that M and R are constants. Show all work!

$$C = \begin{pmatrix} 2 & M \\ R & -5 \end{pmatrix} \qquad D = \begin{pmatrix} 5 & 3 \\ 6 & -1 \end{pmatrix}$$

20. Set up and solve a system of equations using 2 variables: Cashews cost \$10.00 per pound, while almonds cost \$12.00 per pound. How much of each type is needed to create 8 pounds of a mixture that costs \$10.25 per pound?