	Soln
NAME _	

Rec. Instructor:

Signature _____

Rec. Time _____

CALCULUS III - PRACTICE TEST 1

Show all work for full credit. No books or notes are permitted.

Problem	Points	Possible
1		20
2		20
3		30
4		20
5		10
Total Score		100

Note: Bold letters, like **u**, are considered vectors unless specified otherwise.

You are free to use the following formulas on any of the problems.

Projection:
$$\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2}\mathbf{u} = \left(\begin{array}{c} \mathcal{U} \circ \mathcal{V} \\ \hline \|\mathcal{U}\| \end{array}\right) \quad \mathcal{U}$$

 ${\bf Cylindrical\ Coordinates:}$

$$x = r\cos(\theta)$$

$$y = r\sin(\theta)$$

$$z = z$$

$$tan(\theta) = \frac{y}{x}$$

$$z = z$$

Spherical Coordinates:

$$x = \rho \cos(\theta) \sin(\varphi)$$

$$p = \sqrt{x^2 + y^2 + z^2}$$

$$y = \rho \sin(\theta) \sin(\varphi)$$

$$\tan(\theta) = \frac{y}{x}$$

$$z = \rho \cos(\varphi)$$

$$\cos(\varphi) = \frac{z}{\rho}$$

- (20) **1.** Define $\mathbf{u} = \langle 1, 2, 3 \rangle$ and $\mathbf{v} = \langle -1, 0, 1 \rangle$. Compute the following:
 - a) $\|{\bf u}\|$.
 - b) $\mathbf{u} \cdot \mathbf{v}$.
 - c) $\mathbf{u} \times \mathbf{v}$.
 - d) The area of the parallelogram formed by \mathbf{u} and \mathbf{v} .
 - e) The angle between \mathbf{u} and \mathbf{v} .

a)
$$\sqrt{1+4+9} = \sqrt{14}$$

b)
$$\overrightarrow{u} \cdot \overrightarrow{v} = (-1)(1) + 2(0) + 3(1) = -1 + 3 = 2$$

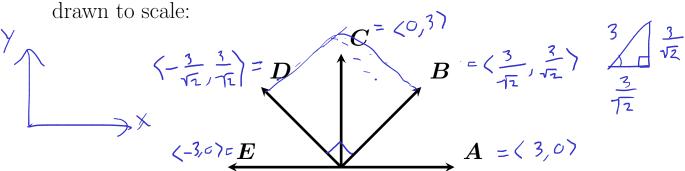
c)
$$\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \end{vmatrix} = \langle 2, -(1+3), 2 \rangle$$

$$= \langle 2, -4, 2 \rangle$$

$$C \circ G = \frac{\overrightarrow{U} \cdot \overrightarrow{V}}{||\overrightarrow{U}|| ||\overrightarrow{V}||} = \frac{2}{\sqrt{14}} = \frac{2}{2\sqrt{7}} = \frac{1}{\sqrt{7}}$$

$$G = \frac{1}{2\sqrt{7}} = \frac{1}{\sqrt{7}}$$

(20) **2.** For this problem we refer to the following diagram, which is drawn to scale:



The vectors \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{C} , \boldsymbol{D} , and \boldsymbol{E} all have length three. All of the angles between the vectors are multiples of 45 degrees. Compute the following explicitly:

- a) $\mathbf{A} \cdot \mathbf{E}$
- b) $\|\mathbf{B} \times \mathbf{D}\|$
- c) **B** · **C**
- $\mathrm{d}) \|\mathbf{C} \mathbf{E}\|$
- e) $\mathbf{A} \cdot \mathbf{A}$

a)
$$\vec{A} \cdot \vec{E} = ||\vec{A}|| \cdot ||\vec{E}|| \cos \pi$$

= $9(-1) = -9$

c)
$$\vec{B} \cdot \vec{C} = ||\vec{B}|| ||\vec{C}|| \cos \frac{\pi}{4}$$

= $9 \cdot \frac{\sqrt{2}}{2} = \frac{9\sqrt{2}}{2}$

$$\frac{1}{2} \int_{C-E}^{E} \left| \frac{1}{2} - \frac{1}{2} \right| = \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}}$$

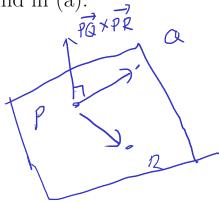
$$e) A \cdot A = ||A||^2 = 3^2 = 9$$

(30) **3.**

- a) Find an equation for the plane containing the points P = (1, 1, 1), Q = (3, 2, 0), and R = (2, 0, 1). Express your answer in the form Ax + By + Cz = D.
- b) Find the shortest distance from point S = (-1, 9, 1) to the plane you found in (a).

c) Find the equation for the line passing through point Q and perpendicular to the plane you found in (a).

T= (x, y, 2)



$$\overrightarrow{PQ} = \langle 2, 1, -1 \rangle$$

$$\overrightarrow{PR} = \langle 1, -1, 0 \rangle$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 0 \end{vmatrix} = (-1, -(0+1), -3)$$

$$= (-1, -1, -3)$$

$$\overrightarrow{h} = (1, 1, 3)$$

$$(1, 1, 3) \cdot (x-1, y-1, z-1) = 6$$

 $x-1 + y-1 + 3(z-1) = 6$
 $x + y + 3z = 5$

(30) **3.**

- a) Find an equation for the plane containing the points P = (1, 1, 1), Q = (3, 2, 0), and R = (2, 0, 1). Express your answer in the form Ax + By + Cz = D.
- b) Find the shortest distance from point S = (-1, 9, 1) to the plane you found in (a).
- c) Find the equation for the line passing through point Q and perpendicular to the plane you found in (a).

b)
$$||proj_{\vec{n}}|| = |comp_{\vec{n}}||proj_{\vec{n}}||$$

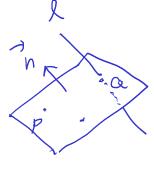
$$= \frac{|\vec{PS} \cdot \vec{n}|}{||\vec{n}||}$$

$$= \frac{|-2 + 8 + 0|}{||\vec{n}||}$$

$$= \frac{6}{||\vec{n}||}$$

C)
$$l = \langle 3, 2, 0 \rangle + t \langle 1, 1, 3 \rangle$$

 $t \in \mathbb{R}$
 $= \langle 3, 4t, 2+t, 3t \rangle$



(20) **4.** Convert the equation written in spherical coordinates into an equation in Cartesian coordinates.

$$\frac{1}{\sin \theta} = \csc(\varphi) = 2\cos(\theta) + 4\sin(\theta)$$

$$x = \rho \cos(\theta) \sin(\varphi) \qquad \qquad \rho = \sqrt{x^2 + y^2 + z^2}$$

$$y = \rho \sin(\theta) \sin(\varphi) \qquad \qquad \tan(\theta) = \frac{y}{x}$$

$$z = \rho \cos(\varphi) \qquad \qquad \cos(\varphi) = \frac{z}{\rho}$$

$$\sqrt{x^2 + y^2 + z^2} = 2 \times + 4y$$

U

(10) **5.** Label the following as reasonable or unreasonable:

- a) $2/\mathbf{v}$ ω
- b) $\mathbf{u}/2$
- c) $\mathbf{u} \cdot \mathbf{v} = 2$
- $d) (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} \vdash$
- e) $3 \times \mathbf{v}$ \cup