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1 Determinants, briefly

In order to define the cross product algebraically, it is convenient to use the notion of a
determinant. The determinant is a function/operation that takes a square matrix and
returns a number.

e 2 x 2 determinant formula:

a b a b
det[c d]_ . d—ad—bc
— “main diagonal minus anti-diagonal”
e 3 x 3 determinant formula:
a b c
defzai{—bdf—i—cdz
g hoi g i g

= a(ei — fh) — b(di — fg) + c(dh — eg)
=aei+ bfg+ cdh — afh — bdi — ceg

— The first equality is cofactor expansion using the top row.

* Cofactor expansion can be used done using any row or column. The signs
in front alternate (like a checkerboard).

— The last equality has a mnemonic: positive diagonals minus negative diago-
nals, with wrapping

* This mnenonic fails for matrices larger than 3 x 3.
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2 Cross product
The cross product is an operation which takes two vectors in R? and returns a vector in

R3.

2.1 Algebraic definition

Definition. The cross product of vectors u = (uy,us, us) and v = (vy,vg, v3) is

i j k
Uz usz|, uyp  ug|, Uy U2
uXv=|u U ug|l= 1— J+ k
Vo U3 V1 U3 V1 V2
v V2 U3

= (ugvg — ugvy, —(u1v3 — Uzv1), ULv2 — UL )

Example (Similar to Exercise 2.190, 2.198). Let u = (3,-1,2), v = (=2,0,1).
Find the unit vector w in the direction of the cross product vector u X v. Express
your answer using standard unit vectors.

Solution.
i j k
uxv=|[3 -1 2
-2 0 1
-1 2, |3 2.Jr 3~
1o 1" |—2 1P |=2 o
=(-1-0)i— (38— (-4))j+ (0 -2k
= —i-7j—2k
Jlux v|| =v1I+49+4=+54=3V6
uXxv 1 7 2

k

w = e j—
luxvl | 3v6 3/6° 36
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2.2 Geometric definition of cross product

Given two nonzero nonparallel vectors u, v, the cross product u X v is the unique vector
with the following three properties:

(i) u X v is orthogonal to u and v

(ii) u X v has length ||u||||v||sinf. This is the area of the parallelogram spanned by
u and v.

u

Figure 2.57 The parallelogram with adjacent sides u and v
hasbase || u || andheight || v || sin8.

Area of a parallelogram = base X height

= [[ull([lv]}sin &)

(iii) {u,v,u X v} forms a right-handed system.

uxv

uxv

Figure 2.54 The direction of u X v is determined by the right-hand rule.
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Example (Similar to Exercise 2.209). Find the area of the paralleogram with ad-
jacent sides u = (1,2, —3) and v = (0,2, 1).

Solution. The area of such a parallelogram given by |[u X v|. So we compute
k

-3
1

(2+6)i—(1—0)j+ (2—0)k
= (8,-1,2)

|ux v| =v64+1+4=|v69

c

X

<

I
O =
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2.3 Algebraic properties of the cross product

Theorem 2.6: Properties of the Cross Product

Let u, v, and w be vectors in space, and let ¢ be a scalar.

i uxv = —(vxu) Anticommutative property
ii. uX(v+w) = uxv+uxw Distributive property
ii. cuxv) = (cu)Xv=uxX(cv) Multiplication by a constant
iv. ux0 = O0xu=0 Cross product of the zero vector
V. vxv = 0 Cross product of a vector with itself
vi. u-(vXw) = (uxXv)-w Scalar triple product
2.3.1 Cross product on the standard unit vectors ,
ixi=jxj=kxk=0 / 7 | Q
7
VAN )
»——7J ixj=k  jxk=i kxi=j < g
jxi=-k kxj=-i ixk=-j C/

2.4 Cross product—angle formula

X
[ux v| = [[ufl[|v]sing or sind= J[u x v
[[ul[[[v]]

Remark. It is not true in general, that

) ot lux vl
Jullv]
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For instance, consider the vectors u = (1,0,0), v = (—1,1,0). Computing gives

[0,0,1) 1 V2

sinf = "+—+ = — =

V21 V2 2
which is true, but plugging sinfl(g) into a calculator would give 7, instead of the
correct answer, %TW' Instead, the correct statement is

& gin—1 Juxvll if 8 acute
ol ~N 0 = [luliflv]]
f ___} 7 —sin~! Juxv] ¢ 0 obtuse

(allfivll

Moral of this story: If you want to find the angle between two vectors, use the dot product—
angle formula instead.

3 Triple scalar product

The triple scalar product of vectors u,v,w is u- (v X w).
If u = (uy, uz,uz), v = (v1,v2,v3), w = (wy, w2, ws),

Uy U2 U3

u-(vxw)=|vg vy u3
wp w2 w3

3.1 Algebraic properties
e Cyclic shift remains equal
u-(vxw)=v:-(wxu)=w-(uxv)
e A single swap negates:

u-(vxw)=-u-(wxv)
=—-v-:(uxw)

=—-w:(vXu)
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3.2 Geometric property: Volume of parallelopiped

The parallelopiped spanned by the vectors u, v, w has volume

V=lu(vxw)|

v
Figure 2.59 The height of the parallelepiped is given by
I projyxwu || -
Derivation: .
V= Hpro.]vxwuH HV X WH
u-(vxw)
= |ooap | IV xwl
[[v > wll

=|u-(vxw)|

Example (Similar to Exercise 2.213). Let u = (-3,5,—-1), v = (0,2,-2), w =
(3,1,1).

(a) Find the triple scalar product u- (v X w).

Solution.
-3 5 —1
u-(vxw)= 2 —2)
3 1 1
-3 -1 -3 5
=23 -(=2) 3 1

2(=3 — (=3)) +2(—3 — 15) = —36]

(b) Find the volume of the parallelopiped with the adjacent edges u, v, w.

Solution. The volume of such a paralleopiped is given by |u- (v X w)|. So

V=u-(vxw)|=[36]
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