Contents

1	Recall the related Calc 1 notions	1
2	Tangent Plane / Linear Approximation	1
3	Differentials	2

1 Recall the related Calc 1 notions

Recall in Calc 1, for functions of one variable, you learned the notion of a **tangent line** at a point x = a and **linear approximation** at a point x = a. You learned that these were different ways of viewing the same concept, with the formula (q, f(a))

$$L(x) = f(a) + f'(a)(x - a).$$

This can be generalized to functions of two variables.

2 Tangent Plane / Linear Approximation

Definition. Let S be a surface defined by a differentiable function z = f(x, y), and let $P_0 = (x_0, y_0)$ be a point in the domain of f. Then, the equation of the tangent plane to S at P_0 is given by

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Definition. Given a function z = f(x, y) with continuous partial derivatives that exist at the point (x_0, y_0) , the **linear approximation** of f at the point (x_0, y_0) is given by the equation

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0).$$

Example (Similar to Exercise 171). Find the equation for the tangent plane to $z = \ln(2x + y)$ at (-1, 3).

Solution.

$$f(x,y) = \ln(2x+y) \qquad f(-1,3) = \ln(1) = 0$$

$$f_x(x,y) = \frac{2}{2x+y} \qquad f_x(-1,3) = \frac{2}{1} = 2$$

$$f_y(x,y) = \frac{1}{2x+y} \qquad f_y(-1,3) = \frac{1}{1} = 1$$

The equation of the plane is

$$z = 0 + 2(x+1) + 1(y-3)$$

Example (Similar to Exercise 174). Find the equation for the tangent plane to $z = 3 + \frac{x^2}{16} + \frac{y^2}{9}$ at (-4,3).

Solution.

$$f(x,y) = 3 + \frac{x^2}{16} + \frac{y^2}{9} \qquad f(-4,3) = 3 + 1 + 1 = 5$$

$$f_x(x,y) = \frac{x}{8} \qquad \qquad f_x(-4,3) = -\frac{1}{2}$$

$$f_y(x,y) = \frac{2y}{9} \qquad \qquad \qquad f_y(-4,3) = \frac{2}{3}$$

The equation of the plane is

$$z = 5 - \frac{1}{2}(x+4) + \frac{2}{3}(y-3)$$

3 Differentials

Recall from Calc 1 that we had the notion of differentials. The differential of y was defined as dy = f'(x) dx. The differential was used to approximate $\Delta y = f(x + \Delta x) - f(x)$, where $\Delta x = dx$.

Extending this idea to the linear approximation of a function of two variables at a point (x_0, y_0) yields the formula for the total differential for a function of two variables.

Definition. Letting $dx = \Delta x$ and $dy = \Delta y$, then the differential dz, also called the **total differential** of z = f(x, y) at (x_0, y_0) is defined as

$$dz = f_x(x_0, y_0) \, dx + f_y(x_0, y_0) \, dy.$$

Example (Similar to Exercise 192). Find the total differential of the function

$$u = \frac{t^3 r^6}{s^2}$$

Answer.

$$du = \frac{3t^2r^6}{s^2} dt + \frac{6t^3r^5}{s^2} dr - \frac{2t^3r^6}{s^3} ds$$