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1 Directional Derivative

Suppose we want to calculate the rate of change in a direction which isn’t « or y, but a
linear combination of the two. That is the notion of a directional derivative.

(a, b, f(a, b))

X
Figure 4.39 Finding the directional derivative at a point on the graph of z = f(x, y). The

slope of the black arrow on the graph indicates the value of the directional derivative at that
point.

Definition. Given a unit vector u = (cos ¢, sin #), the directional derivative of f in
the direction u is given by

Duf(a,b) = lim 201030 b+ hsind) - f(a,b)
h—0 h

Another way to calculate a directional derivative involves partial derivatives:

Proposition. Let u = (cos 6, sin 6) be a unit vector. The directional derivative of f(x,y)
in the direction of u is

Duf(z,y) = fa(z,y)cos + fy(z,y)siné
= <fx(way)afy(x7y)> . <COS€,Sin9>

ve . 3
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Proof. Uses chain rule. See the proof of Theorem 4.12 in the book. O

Remark. If the given direction vector v is not a unit vector, you must normalize v to
get the unit vector u, before computing the directional derivative Dy f.

2 Gradient

The vector <fw(x, ), fy(z, y)> has a name, the gradient of f, and is denoted V f.
(The symbol V is called “nabla” or “del”)

Definition.

Vf(x,y) = <fx(x7y)7fy($7y)>
Vf(aay,z) - <fx(x7y7 z),fy(ac,y,z),fz(a:,y, Z)>

By abusing notation, we can define (in dimension 3)

o 0 0
V'—<ax’ay’az>

_/of of of
vi —<aaya>

from which we get

(This mnemonic will really pay off when we get to divergence and curl, in Section 6.5.)

Formula for directional derivative, using the gradient

[Duf =V -]
| Duf(a,b) = Vf(a,b) ]

Example (Similar to Exercise 281). Calculate V f(3,—2,4), where

f(@,y,2) = 2+
Solution. The gradient is
Vf= <2262”+3y,3z62x+3y, €2x+3y>

i V (3, -2,4) = <2(4)eo,3(4)60,60> ~[(8,12,1)




June 27, 2023 §4.6: Directional Derivatives and the Gradient

Example (Similar to Exercise 266, 272). Let f(z,y) = ze¥, P = (2,—1), and
v = (2,3). Calculate the directional derivative in the direction of v.

Solution. First note that v is not a unit vector. So we replace it with the vector

v _<2,3>_< 2 3>
vl VI3 \VIZ VI3

Then
Duf(P)=Vf(2,-1)-u

= (¢, ae)

(27_1)

~ (2 (5 vm) s

w

3 Properties of the Gradient
“léce<

3.1 Gradient and Directional Derivative

Using the dot product—cosine angle formula a - b = ||al| ||b|| cos , we can get "*—’

Duf(xo,y0) = V f(x0,50) - u= ||V f(x0,0)||[[ull cos § = ||V f (w0, yo) | C<_)E_9
(0 is the angle between V f and u). We can conclude that
e The directional derivative at a point (zg,yo) is maximized when u is pointing in
the same direction as V f(zo, yo)-
— The maximum value of Dy, f(xo,yo) is HVf(a:o, yO)H
— Another way to phrase this: The gradient vector V f(P) points in the direc-
tion of steepest ascent. This maximum rate of ascent is HV f (P)H
e The directional derivative at a point (zg,yo) is minimized when u is pointing in
the opposite direction as V f(zg, yo).
— The minimum value of Dy, f(xg,yo) is —HVf(zo,yo)H
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— Py (g, Vo Zg)
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Figure 4.41 The gradient indicates the maximum and minimum values of the
directional derivative at a point.

Example (Similar to Exercise 295). Let f(z,y) = z*y~2 and P = (2,1). Find
the unit vector that points in the direction of maximum rate of increase at P and
determine that maximum rate.

Solution. The gradient points in the direction of maximum rate of increase, so we
evaluate the gradient at P:

= -
Vf= <4x3y_2, —2934y_3> , VF(2,1) = (32, -32)

The unit vector in this direction is

_(32,-32)  (32,-32)  /v2 V2
T2 ) T s2v2 \ 20 2

The maximum rate, which is the rate in this direction, is given by

H@f@, 1)|| = /322 + (—32)2 = |32v2
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3.2 Gradient and Level Curves

Figure 4.45 Tangent and normal vectors to
2l — 3y + 8y  + 2r— 4y + 4 = 18 at point (=2, 1),

The gradient is normal to level curves.
This property is the genesis for the Lagrange Multiplier method (Section 4.8).
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