Contents

1	§ 5 .3	: Double Integrals in Polar Coordinates 1
	1.1	Polar Rectangular Regions of Integration
	1.2	General Polar Regions of Integration
	1.3	Examples

1 §5.3: Double Integrals in Polar Coordinates

1.1 Polar Rectangular Regions of Integration

A polar rectangle is of the form

$$R = \{ (r, \theta) \mid a \le r \le b, \alpha \le \theta \le \beta \}$$

A double integral over a polar rectangular region can be expressed as an iterated integral in polar coordinates.

$$\iint_{R} f(r,\theta) \, \mathrm{d}A = \iint_{R} f(r,\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta = \underbrace{\int_{\alpha}^{\beta} \int_{a}^{b} f(r,\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta}_{\text{low}}.$$

Notice that dA is replaced by $r dr d\theta$ when working in polar coordinates.

1.2 General Polar Regions of Integration

Figure 5.32 A general polar region between $\alpha < \theta < \beta$ and $h_1(\theta) < r < h_2(\theta)$.

A general polar region is described as

$$R = \{(r, \theta) \mid \alpha \le \theta \le \beta, \ h_1(\theta) \le r \le h_2(\theta)\}$$

A double integral over the above general polar region D is written as:

$$\iint_D f(r,\theta) r \, dr \, d\theta = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r,\theta) \underline{r \, dr \, d\theta}$$

1.3 Examples

x=r<96 _Y=r5/96

Example (Openstax Calc 3 Example 5.25). Evaluate the integral $\iint_R 3x \, dA$ over the region $R = \{(r, \theta) \mid 1 \le r \le 2, \ 0 \le \theta \le \pi\}$

Solution.

$$\iint_{R} 3x \, dA = \int_{0}^{\pi} \int_{1}^{2} 3r \cos \theta \, r \, dr \, d\theta$$
$$= \int_{0}^{\pi} \cos \theta \, d\theta \cdot \int_{1}^{2} 3r^{2} \, dr$$
$$= \left[\sin \theta\right]_{0}^{\pi} \cdot \left[\frac{1}{3}r^{3}\right]_{1}^{2} = 0$$

Example (Openstax Calc 3 Example 5.27). Evaluate the integral $\iint_R (x+y) dA$ where $R = \{(x,y) \mid 1 \le x^2 + y^2 \le 4, \ x \le 0\}$

Solution. The region to integrate over can be expressed in polar as

$$R = \{(r, \theta) \mid 1 \le r \le 2, \ \frac{\pi}{2} \le \theta \le \frac{3\pi}{2}\}$$

Figure 5.31 The annular region of integration R.

The problem can thus be converted to polar:

$$\iint_{R} (x+y) \, \mathrm{d}A = \int_{\pi/2}^{3\pi/2} \int_{1}^{2} (r\cos\theta + r\sin\theta) r \, \mathrm{d}r \, \mathrm{d}\theta$$

$$= \left(\int_{1}^{2} r^{2} \, \mathrm{d}r \right) \left(\int_{\pi/2}^{3\pi/2} (\cos\theta + \sin\theta) \, \mathrm{d}\theta \right)$$

$$= \left[\frac{r^{3}}{3} \right]_{1}^{2} \cdot \left[\sin\theta - \cos\theta \right]_{\pi/2}^{3\pi/2}$$

$$= \frac{7}{3} \cdot -2 = \left[-\frac{14}{3} \right]$$

Example (Openstax Calc 3 Example 5.28). Evaluate the integral $\iint_D r^2 \sin \theta \, r \, dr \, d\theta$ where D is the region bounded by the polar axis and the upper half of the cardioid $r = 1 + \cos \theta$.

Solution. The region D can be described as $\{(r,\theta) \mid 0 \le \theta \le \pi, \ 0 \le r \le 1 + \cos \theta\}$

Figure 5.33 The region \hat{D} is the top half of a cardioid.

The integral can be computed as

$$\iint_{D} r^{2} \sin \theta \ r \, dr \, d\theta = \int_{0}^{\pi} \int_{0}^{1+\cos \theta} r^{3} \sin \theta \, dr \, d\theta$$

$$= \frac{1}{4} \int_{0}^{\pi} \left[r^{4} \right]_{r=0}^{1+\cos \theta} \sin \theta \, d\theta$$

$$= \frac{1}{4} \int_{0}^{\pi} (1+\cos \theta)^{4} \sin \theta \, d\theta$$

$$= -\frac{1}{4} \left[\frac{(1+\cos \theta)^{5}}{5} \right]_{0}^{4} \Pi$$

$$= \left[\frac{8}{5} \right]$$

Remark. Note that the iterated integral cannot be split into a product of two integrals, since the bounds couple the two integrals together (the region is *not* polar rectangular).

Example (Gaussian integral). Determine

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x$$

Solution. Let $I = \int_{-\infty}^{\infty} e^{-x^2} dx$. Then

$$I^{2} = \left(\int_{-\infty}^{\infty} e^{-x^{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^{2}} dy\right)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} dx dy$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}} \cdot r dr d\theta \qquad \text{for } x = -2r dr$$

$$= 2\pi \cdot -\frac{1}{2} \left[e^{-r^{2}}\right]_{0}^{\infty} \qquad \text{for } x = -2r dr$$

$$= -\pi(0-1) = \pi$$

$$\implies I = \sqrt{\pi}$$

Example (Similar to Exercise 5.148). Evaluate the following integral by first converting to polar:

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{0} \cos\left(x^2 + y^2\right) \, \mathrm{d}y \, \mathrm{d}x$$

Solution. The region in polar is

$$\{(r,\theta)\mid 0\leq r\leq 1,\ \pi\leq \theta\leq 2\pi\}$$

The integral becomes

$$= \int_{\pi}^{2\pi} \int_{0}^{1} \cos(r^{2}) r \, dr \, d\theta$$

$$= \pi \left[\frac{1}{2} \sin(r^{2}) \right]_{r=0}^{1}$$

$$= \left[\frac{\pi}{2} \sin(1) \right]_{r=0}^{1}$$