Contents

§6.2	2: Line Integrals
1.1	Scalar Line Integrals
1.2	Applications of the Scalar Line Integral
1.3	Vector Line Integrals
1.4	Applications of Vector Line Integrals
	1.4.1 Work
	1.4.2 Flux
	§6.2 1.1 1.2 1.3 1.4

1 §6.2: Line Integrals

In this section, we introduce two types of integrals over curves: integrals of functions and integrals of vector fields. These are traditionally called **line integrals**, although it would be more appropriate to call them "curve" or "path" integrals.

1.1 Scalar Line Integrals

The scalar line integral $\int_C f(x, y, z) \, ds$ over a curve C is defined as a Riemann sum. Subdivide the curve C into N consecutive arcs C_1, \ldots, C_n , and choose a sample point P_i on each arc C_i .

Partition of C into N small arcs

These form the Riemann sum

$$\sum_{i=1}^{N} f(P_i) \operatorname{length}(C_i) = \sum_{i=1}^{N} f(P_i) \Delta s_i$$

where Δs_i is the length of C_i .

The line integral of f over C is then the limit of these Riemann sums as the maximum of the lengths Δs_i approaches zero:

$$\int_C f(x,y,z) \, \mathrm{d}s = \lim_{\{\Delta s_i\} \to 0} \sum_{i=1}^N f(P_i) \Delta s_i$$

This definition also applies to functions f(x, y) of two variables.

The scalar line integral of the function f(x, y, z) = 1 is simply the length of C:

$$\int_C 1 \, \mathrm{d}s = \mathrm{length}(C)$$

In practice, line integrals are computed using parametrizations. Suppose C has a parametrization $\mathbf{r}(t)$ for $a \leq t \leq b$ with continuous derivative $\mathbf{r}'(t)$.

We divide C into N consecutive arcs C_1, \ldots, C_N corresponding to a partition of the interval [a, b]:

$$a = t_0 < t_1 < \dots < t_{N-1} < t_N = b$$

so that C_i is parametrized by $\mathbf{r}(t)$ for $t_{i-1} \leq t \leq t_i$, and choose sample points $P_i = \mathbf{r}(t_i^*)$ with t_i^* in $[t_{i-1}, t_i]$.

According to the arc length formula,

$$\operatorname{length}(C_i) = \Delta s_i = \int_{t_{i-1}}^{t_i} \left\| \mathbf{r}'(t) \right\| \mathrm{d}t$$

Because $\mathbf{r}'(t)$ is continuous, the function $\|\mathbf{r}'(t)\|$ is nearly constant on $[t_{i-1}, t_i]$ if the length $\delta t_i = t_i - t_{i-1}$ is small, and thus, $\int_{t_{i-1}}^{t_i} \|\mathbf{r}'(t)\| dt \approx \|\mathbf{r}'(t_i^*)\| \Delta t_i$. This gives us the approximation

$$\sum_{i=1}^{N} f(P_i) \Delta s_i \approx \sum_{i=1}^{N} f(\mathbf{r}(t_i^*)) \| \mathbf{r}'(t_i^*) \| \Delta t_I$$

The sum on the right is a Riemann sum that converges to the integral

$$\int_{a}^{b} f(\mathbf{r}(t)) \left\| \mathbf{r}'(t) \right\| \mathrm{d}t$$

as the maximum of the lengths Δt_i tends to zero. This gives us the following formula for the scalar line integral:

Theorem 1 (Computing a Scalar Line Integral) Let $\mathbf{r}(t)$ be a parametrization of a curve C for $a \leq t \leq b$. If f(x, y, z) and $\mathbf{r}'(t)$ are continuous, then

$$\int_C f(x, y, z) \, \mathrm{d}s = \int_a^b f(\mathbf{r}(t)) \left\| \mathbf{r}'(t) \right\| \, \mathrm{d}t$$

The symbol ds is intended to suggest arc length s and is often referred to as the **line element** or **arc length differential**. In terms of a parametrization, we have the symbolic equation

$$\mathrm{d}s = \left\|\mathbf{r}'(t)\right\| \mathrm{d}t$$

where

$$\left\|\mathbf{r}'(t)\right\| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$$

Example (Scalar line integral). Find $\int_C (x + y + z) ds$, where C is the helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ for $0 \le t \le \pi$.

Solution.

$$\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle \qquad t \in [0, \pi]$$
$$\mathbf{r}'(t) = \langle -\sin t, \cos t, 1 \rangle$$
$$\left\| \mathbf{r}'(t) \right\| = \sqrt{(-\sin t)^2 + \cos^2 t + 1} = \sqrt{2}$$

and

$$f(x, y, z) = x + y + z$$

$$f(\mathbf{r}(t)) = f(\cos t, \sin t, t) = \cos t + \sin t + t$$

 \mathbf{SO}

$$\int_C f(x, y, z) \, \mathrm{d}s = \int_0^\pi f(\mathbf{r}(t)) \left\| \mathbf{r}'(t) \right\| \, \mathrm{d}t$$
$$= \int_0^\pi (\cos t + \sin t + t) \sqrt{2} \, \mathrm{d}t$$
$$= \sqrt{2} \left(\sin t - \cos t + \frac{1}{2} t^2 \right) \Big|_0^\pi$$
$$= \boxed{2\sqrt{2} + \frac{\sqrt{2}}{2} \pi^2}$$

1.2 Applications of the Scalar Line Integral

The general principle is that the integral of density is the total quantity.

If we view the curve C as a wire, and $\rho(x, y, z)$ as the mass density of the wire, then the total mass of the wire is given by the integral

$$\int_C \rho(x, y, z) \,\mathrm{d}s$$

If ρ instead stood for the charge density, then this integral would measure total charge.

1.3 Vector Line Integrals

Work is an example of a quantity represented by a vector line integral.

An important difference between vector and scalar line integrals is that vector line integrals depend on the direction along the curve.

A specified direction along a curve C is called an **orientation**. This direction is called the **positive** direction along C, the opposite direction is the **negative** direction, and Citself is called an **oriented curve**.

A curve is **closed** if there is a parametrization $\mathbf{r}(t)$, $a \le t \le b$, such that $\mathbf{r}(a) = \mathbf{r}(b)$, and the curve is traversed exactly once. In other words, closed curves are loops.

(A) Oriented path from P to Q

(B) A closed oriented path

The line integral of a vector field \mathbf{F} over a curve C is defined as the scalar line integral of the tangential component of \mathbf{F} .

Definition (Vector Line Integral). The line integral of a vector field \mathbf{F} along an oriented curve C is the integral of the tangential component of \mathbf{F} :

$$\int_C \mathbf{F} \cdot \mathrm{d}\mathbf{r} = \int_C (\mathbf{F} \cdot \mathbf{T}) \,\mathrm{d}s$$

We use parametrizations to evaluate vector line integrals, but there is one important difference with the scalar case: The parametrization $\mathbf{r}(t)$ must be *positively oriented*; that is, $\mathbf{r}(t)$ must trace C in the positive direction.

Recall that

$$\mathbf{T} = \frac{\mathbf{r}'(t)}{\left\|\mathbf{r}'(t)\right\|}$$

Then we have

$$\underbrace{(\mathbf{F} \cdot \mathbf{T})}_{t} \mathrm{d}s = \left(\mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \right) \|\mathbf{r}'(t)\| \mathrm{d}t = \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \mathrm{d}t$$

Thus we have

Theorem 2 (Computing a Vector Line Integral) If $\mathbf{r}(t)$ is a parametrization of an oriented curve C for $a \le t \le b$, then $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$

It is useful to think of dr as a "vector line element" or "vector differential" that is related to the parametrization by the symbolic equation

$$\mathrm{d}\mathbf{r} = \mathbf{r}'(t) \,\mathrm{d}t = \left\langle x'(t), y'(t), z'(t) \right\rangle \mathrm{d}t$$

Example (Similar to Exercise 6.74). Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = \langle z, y^2, x \rangle$ and C is parametrized (in the positive direction) by $\mathbf{r}(t) = \langle t+1, e^t, t^2 \rangle$ for $0 \le t \le 2$.

Solution.

$$\mathbf{r}(t) = \left\langle t + 1, e^t, t^2 \right\rangle$$
$$\mathbf{F}(\mathbf{r}(t)) = \left\langle t^2, e^{2t}, t + 1 \right\rangle$$
$$\mathbf{r}'(t) = \left\langle 1, e^t, 2t \right\rangle$$

 \mathbf{SO}

$$\begin{split} \int_{C} \mathbf{F} \cdot d\mathbf{r} &= \int_{0}^{2} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_{0}^{2} \left\langle t^{2}, e^{2t}, t+1 \right\rangle \cdot \left\langle 1, e^{t}, 2t \right\rangle dt \\ &= \int_{0}^{2} (e^{3t} + 3t^{2} + 2t) \, dt \\ &= \frac{1}{3} e^{3t} + t^{3} + t^{2} \Big|_{0}^{2} = \frac{1}{3} e^{-\frac{1}{3}} + \frac{1}{3} H_{4} - \frac{1}{3} \\ &= \frac{1}{3} \left(e^{\frac{1}{3}} - 1 \right) + 12 \end{split}$$

Another standard notation for the vector line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is

$$\int_C F_1 \,\mathrm{d}x + F_2 \,\mathrm{d}y + F_3 \,\mathrm{d}z$$

In this notation, we write $d\mathbf{r}$ as a vector differential

$$\mathrm{d}\mathbf{r} = \langle \mathrm{d}x, \mathrm{d}y, \mathrm{d}z \rangle$$

so that

$$\mathbf{F} \cdot \mathrm{d} \mathbf{r} = \langle F_1, F_2, F_3 \rangle \cdot \langle \mathrm{d} x, \mathrm{d} y, \mathrm{d} z \rangle = F_1 \, \mathrm{d} x + F_2 \, \mathrm{d} y + F_3 \, \mathrm{d} z$$

In terms of a parametrization $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$,

$$d\mathbf{r} = \left\langle \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}y}{\mathrm{d}t}, \frac{\mathrm{d}z}{\mathrm{d}t} \right\rangle \mathrm{d}t$$
$$\mathbf{F} \cdot \mathrm{d}\mathbf{r} = \left(F_1(\mathbf{r}(t)) \frac{\mathrm{d}x}{\mathrm{d}t} + F_2(\mathbf{r}(t)) \frac{\mathrm{d}y}{\mathrm{d}t} + F_3(\mathbf{r}(t)) \frac{\mathrm{d}z}{\mathrm{d}t} \right) \mathrm{d}t$$

So we have the following formula:

$$\int_C F_1 \,\mathrm{d}x + F_2 \,\mathrm{d}y + F_3 \,\mathrm{d}z = \int_a^b \left(F_1(\mathbf{r}(t)) \frac{\mathrm{d}x}{\mathrm{d}t} + F_2(\mathbf{r}(t)) \frac{\mathrm{d}y}{\mathrm{d}t} + F_3(\mathbf{r}(t)) \frac{\mathrm{d}z}{\mathrm{d}t} \right) \mathrm{d}t$$

-3>

Example (Similar to Exercise 6.57). Let C be the ellipse parametrized by $\mathbf{r}(\theta) = \langle 5 + 4\cos\theta, 3 + 2\sin\theta \rangle$ for $0 \le \theta \le 2\pi$. Calculate

Solution.

$$\mathbf{r}(\theta) = \langle 5 + 4\cos\theta, 3 + 2\sin\theta \rangle$$
$$\mathbf{r}'(\theta) + \langle -4\sin\theta, 2\cos\theta \rangle$$
$$d\chi \qquad dy$$

 \mathbf{SO}

$$\int_C 2y \, \mathrm{d}x - 3 \, \mathrm{d}y = \int_0^{2\pi} \left(2(3 + 2\sin\theta)(-4\sin\theta) - 3(2\cos\theta) \right) \mathrm{d}\theta$$
$$= \int_0^{2\pi} \left(24\sin\theta + 16\sin^2\theta + 6\cos\theta \right) \mathrm{d}\theta$$
$$= -16 \int_0^{2\pi} \sin^2\theta \, \mathrm{d}\theta$$
$$= \boxed{-16\pi}$$

Theorem 3 (Properties of Vector Line Integrals)

Let C be a smooth oriented curve, and let \mathbf{F} and \mathbf{G} be vector fields.

(i) Linearity:

$$\int_{C} (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{r} = \int_{C} \mathbf{F} \, \mathbf{\mathbf{F}} + \int_{C} \mathbf{G} \cdot d\mathbf{r}$$
$$\int_{C} k \mathbf{F} \cdot d\mathbf{r} = k \int_{C} \mathbf{F} \cdot \mathbf{\mathbf{r}} \qquad (k \text{ a constant})$$

- (ii) Reversing orientation: $\int_{-C} \mathbf{F} \cdot d\mathbf{r} = -\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where -C denotes the curve with opposite orientation.
- (iii) Additivity: If C is the union of n smooth curves $C_1 + \cdots + C_n$, then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \dots + \int_{C_n} \mathbf{F} \cdot d\mathbf{r}$$

C1 C2/0

1.4 Applications of Vector Line Integrals

1.4.1 Work

When force acts on an object moving along a curve, it makes sense to define the work W performed as the line integral

$$W = \int_C \mathbf{F} \cdot \mathrm{d}\mathbf{r}$$

This is the work "performed by the field \mathbf{F} ".

Example (Similar to Exercise 6.65). Calculate the work performed by **F** in moving a particle from (0,0,0) to (4,8,1) along the path $\mathbf{r}(t) = \langle t^2, t^3, t \rangle$ for $1 \le t \le 2$ in the presence of a force field $\mathbf{F} = \langle x^2, -z, -yz^{-1} \rangle$.

Solution.

$$\begin{aligned} \mathbf{F}(\mathbf{r}(t)) &= \mathbf{F}(t^2, t^3, t) = \left\langle t^4, -t, -t^2 \right\rangle \\ \mathbf{r}'(t) &= \left\langle 2t, 3t^2, 1 \right\rangle \\ \mathbf{F} \cdot \mathrm{d}\mathbf{r} &= \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, \mathrm{d}t \\ &= \left\langle t^4, -t, -t^2 \right\rangle \cdot \left\langle 2t, 3t^2, 1 \right\rangle \mathrm{d}t = (2t^5 - 3t^3 - t^2) \, \mathrm{d}t \end{aligned}$$

The work performed by the force field is thus

$$W = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_1^2 (2t^5 - 3t^3 - t^2) dt = \frac{-89}{12}$$

1.4.2 Flux

Line integrals are also used to compute the **flux across a plane curve**, defined as the *normal component* of the vector field, rather than the tangential component.

$$\int_{C} \vec{F} \cdot \vec{N} \, ds$$

Suppose that a plane curve C is parametrized by $\mathbf{r}(t)$ for $a \leq t \leq b$, and let

$$\mathbf{N} = \mathbf{N}(t) = \underline{\langle y'(t), -x'(t) \rangle}, \qquad \mathbf{n}(t) = \frac{\mathbf{N}(t)}{\|\mathbf{N}(t)\|} = \frac{\mathbf{N}(t)}{\|\mathbf{r}'(t)\|}$$

These vectors are normal to *C* since the dot product of **N** with the tangent vector $\mathbf{r}'(t) = \langle \underline{x}'(t), \underline{y}'(t) \rangle$ is zero. The flux across *C* is the integral of the normal conponent $\mathbf{F} \cdot \mathbf{n}$, which can be obtained by integrating $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{N}(t)$ with respect to *t*:

Flux across
$$C = \int_{C} (\mathbf{F} \cdot \mathbf{n}) \, \mathrm{d}s = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{N}(t)}{\|\mathbf{r}'(t)\|} \|\mathbf{r}'(t)\| \, \mathrm{d}t = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \, \mathrm{d}t$$

If \mathbf{F} is the velocity field of a fluid (modeled as a two-dimensional fluid), then the flux is the quantity of fluid flowing across the curve per unit time.

Example (Similar to Exercise 6.90: Flux Across a Curve). Calculate the flux of the velocity vector field $\mathbf{v} = \langle 3 + 2y - y^2/3, 0 \rangle$ across the quarter ellipse $\mathbf{r}(t) = \langle 3 \cos t, 6 \sin t \rangle$ for $0 \le t \le \frac{\pi}{2}$.

Solution.

$$\mathbf{r}'(t) = \langle -3\sin t, 6\cos t \rangle$$
$$\mathbf{N}(t) = \langle 6\cos t, 3\sin t \rangle$$
$$\mathbf{v}(\mathbf{r}(t)) = \left\langle 3 + 2(6\sin t) - (6\sin t)^2/3, 0 \right\rangle$$
$$= \left\langle 3 + 12\sin t - 12\sin^2 t, 0 \right\rangle$$
$$\mathbf{v}(\mathbf{r}(t)) \cdot \mathbf{N}(t) = \left\langle 3 + 12\sin t - 12\sin^2 t, 0 \right\rangle \cdot \langle 6\cos t, 3\sin t \rangle$$
$$= 18\cos t + 72\sin t\cos t - 72\sin^2 t\cos t$$

The flux is thus

$$\int_{a}^{b} \mathbf{v}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \, \mathrm{d}t = \int_{0}^{\pi/2} (18\cos t + 72\sin t\cos t - 72\sin^2 t\cos t) \, \mathrm{d}t = 18 + 36 - 24 = 30$$