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1 §6.4: Green’s Theorem

Before stating Green’s theorem, we need some notation. Consider a domain D whose
boundary C is a simple closed curve—that is, a closed curve that does not intersect
itself. Denote the boundary curve C by ∂D. The boundary orientation of ∂D is
counterclockwise.

Theorem 1 (Green’s Theorem (circulation form))

Let D be a domain whose boundary ∂D is a simple closed curve, oriented counter-
clockwise. Then

I

∂D
F1 dx+ F2 dy =

ZZ

D

�
∂F2

∂x
− ∂F1

∂y

�
dA

Recall that if F is a conservative vector field, (i.e., F = ∇f) then the cross-partial
property is satisfied:

∂F2

∂x
− ∂F1

∂y
= 0

In this case, Green’s Theorem merely confirms what we already know: that the line
integral of a conservative vector field around any closed curve is zero.

Example (Verifying Green’s Theorem). Verify Green’s Theorem for the line integral
along the unit circle C, oriented counterclockwise:

I

C
xy2 dx+ x dy

Solution. First approach: Evaluate the line integral directly:
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Using the standard parametrization of the unit circle:

x = cos θ, y = sin θ

dx = − sin θ dθ, dy = cos θ dθ

The integrand in the line integral is

xy2 dx+ x dy = cos θ sin2 θ(− sin θ dθ) + cos θ(cos θ dθ)

=
�
− cos θ sin3 θ + cos2 θ

�
dθ

and

I

C
xy2 dx+ x dy =

Z 2π

0

�
− cos θ sin3 θ + cos2 θ

�
dθ

= − sin4 θ

4

�����

2π

0

+
1

2

�
θ +

1

2
sin 2θ

������

2π

0

= 0 +
1

2
(2π + 0) = π

Second approach: Evaluate the line integral using Green’s Theorem
In this example, F1 = xy2 and F2 = x, so

∂F2

∂x
− ∂F1

∂y
=

∂

∂x
x− ∂

∂y
xy2 = 1− 2xy

According to Green’s Theorem,

I

C
xy2 dx+ x dy =

ZZ

D

�
∂F2

∂x
− ∂F1

∂y

�
dA =

ZZ

D
(1− 2xy) dA

where D is the disk x2 + y2 ≤ 1 enclosed by C. The integral of 2xy over D is zero
by symmetry—the contributions for positive and negative x cancel. We can check
this directly:

ZZ

D
(−2xy) dA = −2

Z 1

−1

Z √
1−x2

−
√
1−x2

xy dy dx = −
Z 1

−1
xy2

�����

√
1−x2

y=−
√
1−x2

dx = 0

2



July 18, 2023 §6.4: Green’s Theorem

Therefore,

ZZ

D

�
∂F2

∂x
− ∂F1

∂y

�
dA =

ZZ

D
1 dA = Area(D) = π

This agrees with the value obtained in the first approach. So Green’s Theorem is
verified in this case.

Example. Compute the circulation of F(x, y) =


sinx, x2y3

�
around the triangular

path C with counterclockwise orientation shown below:

To compute the line integral directly, we would have to parametrize all three sides
of the triangle. Instead, we apply Green’s Theorem to the domain D enclosed by
the triangle. This domain is described by 0 ≤ x ≤ 2, 0 ≤ y ≤ x.

Applying Green’s Theorem, we obtain

∂F2

∂x
− ∂F1

∂y
=

∂

∂x
x2y3 − ∂

∂y
sinx = 2xy3

I

C
sinx dx+ x2y3 dy =

ZZ

D
2xy3 dA =

Z 2

0

Z x

0
2xy3 dy dx

=

Z 2

0

 
1

2
xy4

����
x

0

!
dx =

1

2

Z 2

0
x5 dx =

1

12
x6

����
2

0

=
16

3

3



July 18, 2023 §6.4: Green’s Theorem

1.1 Area via Green’s Theorem

In order to use Green’s Theorem to compute the area of a domain D enclosing a simple

closed curve C, we want a vector field F = ⟨F1, F2⟩ such that
∂F2

∂x
− ∂F1

∂y
= 1. Here are

some possible options, which one can check satisfy the given relation:

• F(x, y) = ⟨0, x⟩

• F(x, y) = ⟨−y, 0⟩

• F(x, y) =


−y/2, x/2

�

Thus I

C
F1 dx+ F2 dy =

ZZ

D

�
∂F2

∂x
− ∂F1

∂y

�
dA =

ZZ

D
1 dA = area(D)

Plugging in F1 and F2 for each of these three cases, we obtain the following three formulas
for the area of the domain D:

Area enclosed by C =

I

C
x dy =

I

C
−y dx =

1

2

I

C
x dy − y dx (1)

These formulas tell us how to compute an enclosed area by making measurements only
along the boundary.

Example (Computing Area via Green’s Theorem). Compute the area of the ellipse�
x
a

�2
+
�y
b

�2
= 1 using a line integral.

Solution. We parametrize the boundary of the ellipse by

x = a cos θ, y = b sin θ, 0 ≤ θ < 2π

We calculate the area in each of the three possible ways. Using the first formula in
(1):

Enclosed area =

I

C
x dy =

Z 2π

0
(a cos θ)(b cos θ) dθ

= ab

Z 2π

0
cos2 θ dθ

= πab
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Using the second formula in (1), we get

Enclosed area =

I

C
−y dx =

Z 2π

0
(−b sin θ)(−a sin θ) dθ

= ab

Z 2π

0
sin2 θ dθ

= πab

And using the third formula in (1) yields

Enclosed area =
1

2

I

C
x dy − y dx

=
1

2

Z 2π

0
[(a cos θ)(b cos θ)− (b sin θ)(−a sin θ)] dθ

=
ab

2

Z 2π

0

�
cos2 θ + sin2 θ

�
dθ

=
ab

2

Z 2π

0
dθ = πab

All three methods yield the standard formula for the area of an ellipse.

1.2 Additivity of Circulation

Circulation around a closed curve has an important additivity property: If we decompose
a domain D into two (or more) nonoverlapping domains D1 and D2 that intersect only
on part of their boundaries, then

I

∂D
F · dr =

I

∂D1

F · dr+
I

∂D2

F · dr
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1.3 More General Form of Green’s Theorem

Consider a domain D whose boundary consists of more than one simple closed curve
as in the above figure. As before, ∂D denotes the boundary of D with its boundary
orientation. In other words, the region lies to the left as the curve is traversed in the
direction specified by the orientation. For the domains above,

∂D1 = C1 + C2, ∂D2 = C3 + C4 − C5

The curve C5 occurs with a minus sign because it is oriented counterclockwise, but the
boundary orientation requires a clockwise orientation.

Green’s Theorem remains valid for more general domains of this type:

I

∂D
F · dr =

ZZ

D

�
∂F2

∂x
− ∂F1

∂y

�
dA

This equality is proved by decomposing D into smaller domains, each of which is bounded
by a simple closed curve.
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1.4 Flux Form of Green’s Theorem

Suppose that we want to compute the flux of the vector field F = ⟨F1, F2⟩ across the
curve C. That is, we want to integrate the normal component of F around the curve C.

If the curve is parametrized by r(t) =


x(t), y(t)

�
, for a ≤ t ≤ b, the unit tangent

vector is given by T =
r′(t)r′(t)

 =

*
x′(t)r′(t)

 ,
y′(t)r′(t)



+
and the outward unit normal

vector is given by n(t) =

*
y′(t)r′(t)

 ,
−x′(t)r′(t)



+
since its dot product with T is 0 and n

points to the right as we travel around the curve.
The flux of F out of C is given by

I

C
F · n ds =

Z b

a
(F · n)(t)

r′(t)
 dt

=

Z b

a

�
F1y

′(t)
∥r(t)∥ − F2x

′(t)
∥r(t)∥

�
∥r(t)∥ dt

=

Z b

a
F1y

′(t) dt− F2x
′(t) dt

=

Z b

a
F1 dy − F2 dx

This is in a form to which we can apply Green’s Theorem, but we have switched the
roles of F1 and F2 and added a negative sign to the second term. So, Green’s Theorem
gives us

I

∂D
F · n ds =

Z

∂D
F1 dy − F2 dx =

ZZ

D

�
∂F1

∂x
+

∂F2

∂y

�
dA
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1.5 Remarks looking forward

Divergence and curl are discussed in the next section. Once we have those operations
defined, we are able to rewrite the the formulas for Green’s theorem in the following
way:

I

C
F · dr =

ZZ

D

�
∂F2

∂x
− ∂F1

∂y

�
dA =

ZZ

D
curlz(F) dA (circulation form)

I

∂D
F · n ds =

ZZ

D

�
∂F1

∂x
+

∂F2

∂y

�
dA =

ZZ

D
div(F) dA (flux form)

It should also be mentioned that Green’s theorem is the flat version of Stokes theorem.
In other words, Stokes’ theorem generalizes Green’s theorem from regions lying on the
xy-plane to surfaces.
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