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1 §6.8: The Divergence Theorem

1.1 Overview of Theorems

Fundamental Theorem of Calculus

Z b

a
f ′(x) dx = f(b)− f(a)

Fundamental Theorem for Line Integrals

Z

C
∇f · dr = f(P1)− f(P0)

Green’s theorem, circulation form
ZZ

D
(Qx − Py) dA =

Z

C
F · dr

Since Qx − Py = curlF · k and curl is a derivative of sorts, Green’s theorem relates
the integral of derivative curlF over the planar region D to an integral of F over the
boundary of D.

Green’s theorem, flux form
ZZ

D
(Px +Qy) dA =

Z

C
F ·N ds

Since Px + Qy = divF and divergence is a derivative of sorts, the flux form of Green’s
theorem relates the integral of derivative divF over the planar region D to an integral
of F over the boundary of D.

Stokes’ theorem ZZ

S
curlF · dS =

Z

C
F · dr

If we think of the curl as a derivative of sorts, then Stokes’ theorem relates the integral
of derivative curlF over the surface S (not necessarily planar) to an integral of F over
the boundary of S.
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Theorem 1 (The Divergence Theorem)

Let S be a piecewise, smooth closed surface that encloses a solid E in space. Assume
that S is oriented outward, and let F be a vector field with continuous partial
derivatives on an open region containing E. Then

ZZZ

E
divF dV =

ZZ

S
F · dS

Remark. The divergence theorem is Green’s theorem (flux version) in one higher di-
mension.

Example (OpenStax 6.77). Verify the divergence theorem for the vector field F =
⟨x− y, x+ z, z − y⟩ and the surface S that consists of the cone x2 + y2 = z2, 0 ≤
z ≤ 1, and the circular top of the cone. Assume this surface is positively oriented.
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Solution. Let E be the solid cone enclosed by S. We verify that

ZZZ

E
divF dV =

ZZ

S
F · dS.

First we compute the triple integral. Note that divF = 2, thus

ZZZ

E
divF dV = 2

ZZZ

E
dV = 2(volume of E) = 2

1

3
π(1)2(1) =

2π

3

Now we compute the flux integral. We break S into two pieces: the circular top of
the cone and the lateral surface of the cone. Call them S1 and S2, respectively. To

3



July 24, 2023 §6.8: The Divergence Theorem

compute the flux across the circular top S1, we use

r1(u, v) = ⟨u cos v, u sin v, 1⟩ u ∈ [0, 1], v ∈ [0, 2π]

tu = ⟨cos v, sin v, 0⟩
tv = ⟨−u sin v, u cos v, 0⟩

tu × tv = ⟨0, 0, u⟩
F(r1(u, v)) = ⟨u cos v − u sin v, u cos v − 1, 1− u sin v⟩

F(r1(u, v)) · (tu × tv) = u− u2 sin v

so the flux across S1 is

ZZ

S1

F · dS =

Z 1

0

Z 2π

0
F(r1(u, v)) · (tu × tv) dA

=

Z 1

0

Z 2π

0
(u−����: 0

u2 sin v ) dv du

=

Z 1

0
2πu du =

�� �π

To compute the flux over the lateral surface S2, we use

r2(u, v) = ⟨u cos v, u sin v, u⟩ , u ∈ [0, 1], v ∈ [0, 2π]

tu = ⟨cos v, sin v, 1⟩
tv = ⟨−u sin v, u cos v, 0⟩

tu × tv = ⟨−u cos v,−u sin v, u⟩

Notice that this is inward pointing, so we instead use tv × tu = ⟨u cos v, u sin v,−u⟩

F(r2(u, v)) = ⟨u cos v − u sin v, u cos v + u, u− u sin v⟩
F(r2(u, v)) · (tv × tu) = u2(cos2 v − sin v cos v) + u2(sin v cos v + sin v)− u2(1− sin v)

= u2
h
cos2 v − sin v cos v + sin v cos v + sin v − 1 + sin v

i

= u2
h
cos2 v + 2 sin v − 1

i
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so the flux across S2 is

ZZ

S2

F · dS =

Z 1

0

Z 2π

0
F(r2(u, v)) · (tv × tu) dA

=

Z 1

0

Z 2π

0
u2(cos2 v + 2 sin v − 1) dv du

=

Z 1

0
u2 du ·

Z 2π

0
(cos2 v + 2 sin v − 1) dv

=
1

3
· (π + 0− 2π) =

�� ��−π
3

The total flux across S is

ZZ

S
F · dS =

ZZ

S1

F · dS+

ZZ

S2

F · dS = π +

�
−π

3

�
=

2π

3

Thus we have verified the divergence theorem for this example.

1.2 Using the Divergence Theorem

The divergence theorem translates between the flux integral of closed surface S and
a triple integral over the solid enclosed by S. Therefore, the theorem allows us to
compute flux integrals or triple integrals that would ordinarily be difficult to compute
by translating the flux integral into a triple integral and vice versa.

Example (OpenStax 6.78). Calculate the surface integral
RR

S F · dS, where S is
cylinder x2 + y2 = 1, 0 ≤ z ≤ 2, including the circular top and bottom, and

F =
D
x3

3 + yz, y
3

3 − sin(xz), z − x− y
E
.

Solution. Computing this integral without the divergence theorem would require
breaking the cylinder into three parts, and computing three surface integrals.

By contrast, the divergence theorem allows us to calculate the single triple integralRRR
E divF dV , where E is the solid enclosed by the cylinder. Using the divergence

5



July 24, 2023 §6.8: The Divergence Theorem

theorem and converting to cylindrical coordinates, we have

ZZ

S
F · dS =

ZZZ

E
divF dV

=

ZZZ

E
(x2 + y2 + 1) dV

=

Z 2π

0

Z 1

0

Z 2

0
(r2 + 1)r dz dr dθ

= 4π

Z 1

0
(r2 + 1)r dr

= 4π

�
1

4
r4 +

1

2
r2
�1

0

= 4π · 3
4
= 3π

Example (Openstax 6.79). Let v =


−y

z ,
x
z , 0

�
be the velocity field of a fluid. Let

C be the solid cube given by 1 ≤ x ≤ 4, 2 ≤ y ≤ 5, 1 ≤ z ≤ 4, and let S be
the boundary of this cube (see the following figure). Find the flow rate of the fluid
across S.

Solution. The flow rate of fluid across S is
RR

S v ·dS. Calculating this flux integral
direction would require six separate flux integral, one for each face of the cube.
Instead, we can use the divergence theorem:

ZZ

S
v · dS =

ZZZ

C
div(v) dV

=

ZZZ

C
0 dV = 0
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